
Ready, Set, Go!

Measuring, Mapping and Managing with XIL API 2.0

7th ASAM US-Workshop, Oct. 29, 2014, Novi, MI, USA

Dr. Rainer Rasche, dSPACE GmbH (Speaker)

Constantin Brückner, AUDI AG

Dr. Dietmar Neumerkel, Daimler AG

ASAM developed ASAM HIL API as a standard for the communication between test automation software and hardware-in-the-loop (HIL) test benches.

HIL API enables users to choose products freely according to their requirements, independent of the vendor. Several implementations of the latest

version of the standard, HIL API 1.0.2, are available on the market now. This is today. The future version 2.0 of the API is due out soon, with broadly

extended functionality and enhanced applicability. It will support test benches at all stages of the function software development process –MIL, SIL, HIL,

etc. As a result, the name “HIL API” is history. The ASAM standardization workgroup has decided to change the name to XIL API –Generic Simulator

Interface with release version 2.0.

This paper shows some major benefits and use cases of XIL API 2.0 for measuring, mapping and managing by describing an example of distributed

vehicle simulation in which variables from different data sources (real-time vehicle dynamics simulation model, virtual environment for road and other

vehicles) need to be measured time-synchronously and concurrently. Measuring means collecting the time traces of these variables. Further test steps

comprise data analysis and evaluation in order to provide verdicts within a test result.

The new measuring capability of XIL API 2.0 allows data acquisition to be configured. The time traces of variables from different data sources are

assembled on a common time basis via ports already known from HIL API 1.0.2. Users can control the data flow using sophisticated triggers, e.g., with

respect to important situations (gear shifts, transient response in the drivetrain, etc.). Recorders stream the coherent results either to memory for further

processing or to standardized measurement files (MDF 4) for data reuse in a later process stage.

At the present time it is a challenging task for test developers to achieve effective decoupling between test cases and test benches in order to improve

test reuse. The test developer’s work will be greatly facilitated by one of the new XIL API 2.0 framework’s basic features: mapping. This provides the

standardized assignment of mapped values (variable identifiers, physical units, data types) on the test case and on the test bench side. Thus, mapped

values can differ during the development process. The user just has to adjust the mapping –the test case (e.g., measurement definition) remains

unaffected. In the example of distributed vehicle simulation, mapped values such as the data type or physical unit of the measured vehicle’s velocity may

change on the test bench side because different precisions or different simulation model suppliers are involved in the development process while the

same test case implementation is being reused.

Since port initialization is not part of HIL API today, methods for managing the ports’ lifecycles have also been added to XIL API 2.0. This enables the

user to configure proper port preconditions in a unified way (e.g., which simulation model to download on the port and whether simulation needs to start

automatically after download). This information enables the framework to put ports into their proper states before measuring begins.

All in all, this paper is intended to provide everyone working in test development and in tool development with some important use cases and best

practices on what XIL API 2.0 is about: managing multiple ports as different data sources; mapping values; and measuring time traces of distributed data

sources with products independent of vendor or process stage –all of which demonstrate the great advantages of this standard.

Contribution to the 7th ASAM US-Workshop, Oct. 29, 2014, Novi, MI, USA

Dr. Rainer Rasche, dSPACE GmbH (Speaker)

Constantin Brückner, AUDI AG

Dr. Dietmar Neumerkel, Daimler AG

2

Preface

3

Agenda

1 Introduction

2 Motivation using an Example

3 Measuring

4 Mapping

5 Managing

6 Summary and Conclusion

1 Introduction

Introduction

4

Introduction

5

At present: Change from ECU-oriented to function-oriented development

New functions: especially in

advanced driver assistance or autonomous driving

New trend: Functions are spread across a set of collaborating ECUs.

Effect: Increasing complexity and difficulty in testing these functions

Need: Testing across ECU boundaries for higher order functionalities

Change: from homogenous single-purpose HILs towards a

more heterogeneous flexible architecture

Challenge: high scalability, flexibility and reconfiguration freedom to

rapidly assemble different test configurations.

As a result:

Complex networked vehicles need complex networked test benches!

6

Virtual Environment

Simulation PC Simulation PC

HIL HIL

Vehicle dynamics

simulation
Motor simulation

User

Interface &

Test

automation

User PC

Traffic

simulation
Sensor

models

Necessity to integrate new simulation systems for virtual environment

Simulation of infrastructure like roads, buildings, landscape, traffic signs

Enables Audi to test virtually in a complex interconnected surrounding world

7

Agenda

1 Introduction

2 Motivation using an Example

3 Measuring

4 Mapping

5 Managing

6 Summary and Conclusion

2 Motivation using an Example

A simulated car drives on a virtual road using adaptive cruise control

Other traffic participants are simulated

A sensor model simulates the radar sensor, which detects vehicles in front.

If a vehicle is detected the velocity is adopted automatically to that of the car in front.

The motor simulation adopts acceleration and speed of the car under test according

to the received distance information.

The vehicle dynamics simulation performs breaking if the car in front is getting slower.

If necessary, the motor simulation sends a requests for a gear change to the

transmission.

8

Use Case

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

V [km/h] Gear

t [s]

9

Agenda

1 Introduction

2 Motivation using an Example

3 Measuring

4 Mapping

5 Managing

6 Summary and Conclusion

3 Measuring

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

10

Problem: Offset and Drift

Offset

Drift

Timers of different signal sources on different hardwares have offsets and

drift apart due to different reset times and different frequencies which may

also depend on environmental factors such as changing temperatures.

XIL 2.0.0 provides interfaces to configure

compensation of Offset and Drift on a common time base.

V [km/h] Gear

t [s]

V [km/h] Gear

t [s]

11

Distributed Simulation
Compare hardware timers with clocks at different places in the world

New York
Tokyo

Dubai

Munich

V Ego

Vehicle dynamics

simulation

Gear

Shift Request

Motor simulation

V Front

Traffic simulation

User Interface &

Test Automation

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

Offset

Drift

V [km/h] Gear

t [s]
-10

-5

0

5

10

15

20

25

30

35

40

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00

Traffic Simulation

Vehicle Dynamics Simulation

Drivetrain Simualtion

Testautomation PC

12

Shift of Time Stamps

-10

-5

0

5

10

15

20

25

30

35

40

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00

Traffic Simulation

Vehicle Dynamics Simulation

Drivetrain Simualtion

Testautomation PC

XIL 2.0.0 Framework allows to set an resynchronization interval in order to re-calculate correction factors

for offset and drift for future data acquisition based on measured data history (past).

The synchronized data, that XIL 2.0.0 Framework has added to the acquistion remains unchanged,

which means there is no post precessing.

The user can define recorders to store measured data either to memory or to file (MDF4 or higher)

New York

Tokyo

Dubai

Munich

Resynchronization

Present

FuturePast

t [s]

t_sample

[s]

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

-10,00 0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

-10,00 0,00 10,00 20,00 30,00 40,00 50,00 60,00

V Ego [km/h]

V Front [km/h]

Gear

Shift Request

13

Result of Synchronization

Offset

Drift

Unsynchonized Synchonized

V [km/h] Gear V [km/h] Gear

Offset and Drift have been removed.

16

Agenda

1 Introduction

2 Motivation using an Example

3 Measuring

4 Mapping

5 Managing

6 Summary and Conclusion

4 Mapping

17

Mapping of Variables

New York
Tokyo

Munich

V Ego
Vehicle dynamics

simulationV Front Traffic simulation

User Interface &

Test Automation
0

20

40

60

80

100

120

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00

V Ego [km/h]

V Front [km/h]

Testcase

Abstract

Identifier V_Front V_Ego

Unit m/s m/s

Type A_Float A_Float

Port New York Tokyo

Testbench
Concrete

Identifier Modelroot/Vehicle/V

Unit mph

Type A_Float

Testbench
Concrete

Identifier Modelroot/VehDyn/V

Unit km/s

Type A_Int

Concrete identifier, unit, type and port of testbench may differ.

The test case description remains the same!

18

Mapping

Motivation: Maximal Re-Use of Tests

Identifier Mapping

Maps a framework label to a testbench label.

E. g. maps an abstract identifier of a test case variable to a concrete

identifier within the simulation model

String Mapping

Maps framework strings to test bench strings.

For example this can be used to map abstract filenames on the framework

side to concrete filenames on the test bench side

Raster mapping

Maps abstract raster names on the framework side to concrete raster

names on the testbench side.

Based on XML Schema

19

Developing the XIL “View of the World”

The Entire XIL Framework

New York Munich Dubai TokyoFiji

Cfg Cfg Cfg Cfg Cfg

ECU(CM) MA Network Diag EES

Testbench

(TB)

incl.

Tools/Drivers

Testbench API

Framework

(FW)

Framework API

Test Automation

Framework Variable

20

Abstract Identifiers on test case side (e. g. “V_Ego”).

Object oriented access

Guarantees that test cases are independent of the underlying test system

Thus, independent of vendor and process stage XIL

21

Agenda

1 Introduction

2 Motivation using an Example

3 Measuring

4 Mapping

5 Managing

6 Summary and Conclusion

5 Managing

No standardized methods available for initialization or configuration

Thus, initialization was done manually or via personal framework

22

Initialization of the Simulator with HIL API 1.0.2

HIL Simulator

Configure Simulator

StartSimulator

myDiagPort = new VendorX.DiagPort()

myVal = myDiagPort.Read (....)

T
e
s
t

C
a
s
e

P
e

rs
o

n
a
l
F

ra
m

e
w

o
rk

M
a

n
u

a
ll

y
 o

r
P

e
rs

o
n

a
l

F
ra

m
e

w
o

rk

P
ro

p
ri

e
ta

ry
 T

e
s

t
A

u
to

m
a
ti

o
n

Im
p

le
m

e
n

ta
ti

o
n

 f
ro

m

V
e
n

d
o

rX

H
IL

 A
P

I

....

....

23

Framework Configuration with XIL API 2.0

24

Configuration of Life-Cycle Management

Framework manages the port Life-Cycle

Framework starts up ports in a configured order

Framework establishes correct initial states (e. g. simulation stopped or

running, online or offline, measurement stopped or running)

Framework shuts down ports according to the shutdown order

 XIL API 2.0 comes up with broadly extended functionality:

Measuring of signals from different data sources with time synchronization

Mapping in order to decouple test cases and test benches

Managing of the test bench ports’ life-cycle

 Easy test case exchange between different

vendors and even between different development stages, e. g.

offline simulators in early stages and productive HIL test benches

 Better know-how transfer from one test bench to the other

 Reduced training costs for employees

 From end users perspective:

This allows the ‘best’ test software combined with the ‘best’ test

hardware.

25

Summary and Conclusion

