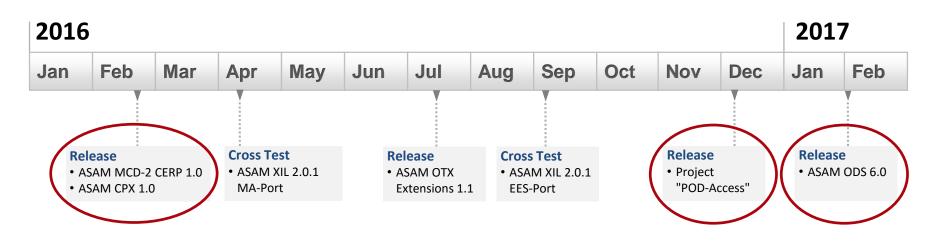


Current and Future Standard Development Projects at ASAM

Thomas Thomsen Global Technology Manager, ASAM e.V.


- **Current Standardization Projects** 1
 - Roadmap for 2016
 - Major standard developments
- The Future of Test Data Management With ASAM ODS 2 ASAM ODS
- Upcoming AUTOSAR Adaptive Platform and Impact ASAM 3 **Standards**

- 1 Current Standardization Projects
 - Roadmap for 2016
 - Major standard developments
- The Future of Test Data Management With ASAM ODS
 ASAM ODS
- 3 Upcoming AUTOSAR Adaptive Platform and Impact ASAM Standards

ASAM Road Map for 2016 (prelim.)

Other ASAM Projects in 2016

(with releases in 2017 or later)

- ASAM ODS 6.0
- ASAM MCD-1 XCP 1.4
- ASAM MCD-2 CERP 1.0.1
- ASAM CPX 1.0.1
- ASAM XIL 2.0.3 and 2.0.4

ASAM MCD-2 CERP

Title:Calibration Expert System Rule and Product Model FormatRelease:February 2016

<u>Goal</u>: Define a data model and language to express complex calibration parameter dependencies.

Use-Cases:

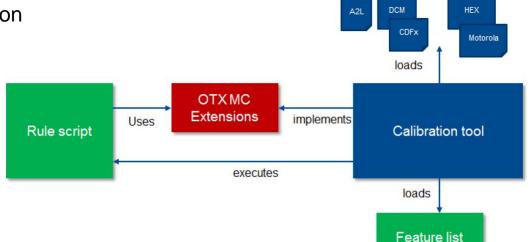
Standard is the basis for a new class of tools: <u>Calibration Expert Systems</u>.

- Define system parameters (e.g. hardware, legal values)
- Check parameter consistency
- Check parameter plausibility
- Future: Calculate calibration parameters from defined parameters and system model data

Benefits:

- Capture business-critical expert knowledge
- Improve calibration quality and detect errors early
- Improve communication between controls engineering, software development, calibration, test and quality assurance
- Future: Speed-up calibration process via parameter calculation

ASSAM Association for standardisation of automation and measuring system automation and measuring systems



ASAM MCD-2 CERP

Title: Calibration Expert System Rule and Product Model Format Release: February 2016

Technical Content:

- Turing-complete rule language to express complex calculations
- ASAM MCD-2 CERP is an extension of OTX (ISO 13209)
- 9 extensions are shared with ASAM MCD-2 CERP
 - access to calibration and measurement data
 - access to A2L data
 - mathematical functions
- ASAM MCD-2 CERP defines 3 additional extension:
 - Feature: distinct property of the device to be calibrated (i.e. number of cylinders, power of engine, valid emission standard, etc.)
 - RuleProcedure: definition of rules
 - TermProcedure: definition of pre-conditions for rules
- Standard allows the definition of calibration variants

ASAM CPX

Title: **Calibration Process Exchange Format** Release: February 2016

<u>Goal</u>: Define an exchange format for sequences of ECU calibration, based upon ISO OTX.

Use-Cases:

- Define and document the steps of specific calibration processes
- Create comprehensive libraries for ECU calibration
- Automated calibration

Benefits:

- Capture business-critical expert knowledge
- Improve calibration process efficiency and repeatability

Association for standardisation of automation and measuring system automation and measuring systems

ASAM CPX

Title: **Calibration Process Exchange Format** Release: February 2016

Technical Content:

- Process language based upon OTX (ISO 13209)
- ASAM CPX is an extension of OTX
- 9 extensions are shared with ASAM MCD-2 CERP
- ASAM CPX defines 3 additional extension:
 - MeasurementRead: functions to control the execution of measurements, e.g. start, stop, access to recorded data
 - Model: functions to control the execution of models, e.g. start, stop, access to model data
 - ControlMath: mathematical functions
- Future: definition of flow charts and state machines to describe workflows (could potentially become part 5 of ISO 13209)

Project "POD-Access *)"

Title: - to be determined -Q4 2016 Release:

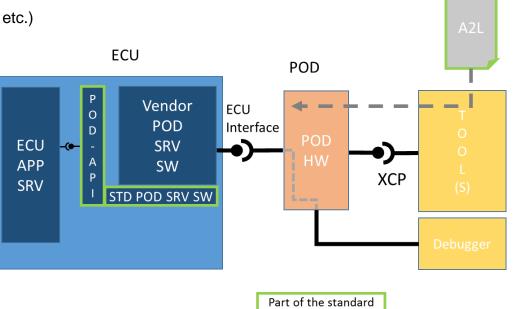
Goal: Standardize POD configuration and software interface between the POD hardware and ECU software.

Technical Use-Cases:

- Integration of POD-driver into the ECU software
- Configuration of the POD

Benefits:

- Easier integration of a POD into an ECU
- Easier connection and configuration of multiple tools to one POD
- Use of multiple PODs for one ECU development project
- Enables OFMs and Tier-1s to select best-in-class calibration tools


automation and measuring systems

Project "POD-Access"

- to be determined -Title: Release: Q3 2016

Technical Content:

- Definition of POD topologies (e.g. single POD / single tool, multiple PODs / multiple tools, etc.)
- Definition of POD resources (e.g. memory, CPU core, execution time, timer, etc.)
- ECU & POD startup
- POD state model
- API for common technical use-cases (e.g. detection, initialization, measurement, etc.)
- AML^{*)}-definition for POD

*) AML: A2L Meta Language

New Standard

Other Projects

ASAM MCD-1 XCP 1.4

- Improvements for fast data acquisition, e.g. packed DAQ lists, optimized methods for DAQ configuration
- Enhancements for DAQ on multicore processors
- Features needed by the upcoming POD-Access standard

ASAM XIL 2.0.3 and 2.0.4

- Standard is in maintenance mode: bug-fixing and minor improvements, only
- Two cross test events with major HIL system vendors
- Cross tests supported by ASAM-developed test-cases and report generator
- April 2016: focus on model access port
- September 2016: focus on electrical error stimulation port

- **Current Standardization Projects** 1
 - Roadmap for 2016
 - Major standard developments
- The Future of Test Data Management With ASAM ODS 2 ASAM ODS
- Upcoming AUTOSAR Adaptive Platform and Impact ASAM 3 **Standards**

ASAM ODS 6.0

Title:Open Data ServicesRelease:Q1 2017

<u>Goal</u>: Replace CORBA with state-of-the-art technology for client-server communication, and modernize the ODS API.

Phase 1 - Client-Server Technology Research Project: finished

- Requirements, benchmarking and feasibility study
- Supported by two research companies, paid by ASAM
- Investigated multiple open-source technologies: REST, Thrift, Protobuf
- Result: Project group accepted two technologies as foundation for the future ODS API
 - W3W REST (standard for API specification)
 - Google Protobuf (data serialization)

Phase 2 - API Specification: started

- Specification of new ODS API based upon REST and Protobuf
- API is consolidated and shall become easier to use
- Special focus on performance and IT security

Concept Project: Big-Data Technologies for ODS

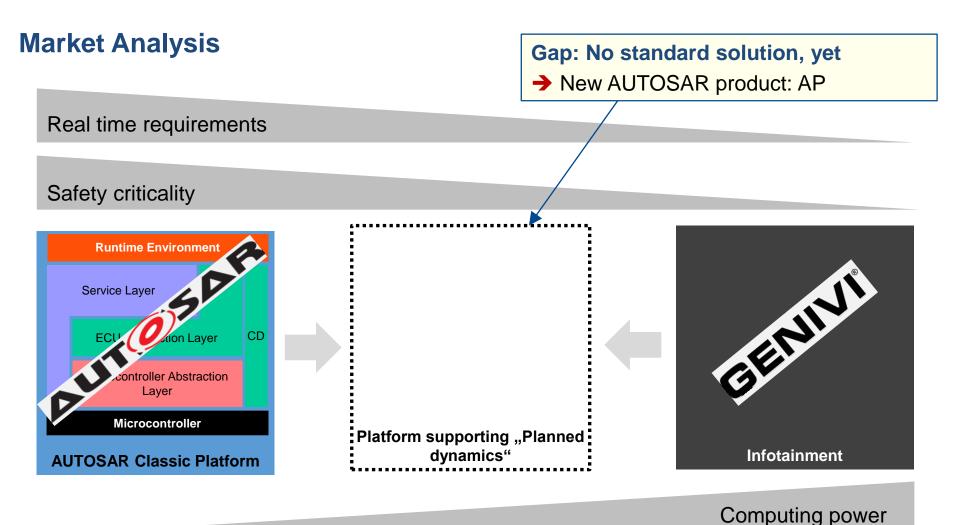
<u>Goal</u>: Evaluation of open-source Big-Data technologies for use with ODS servers.

Phase 1 - Use-Case Analysis: ongoing

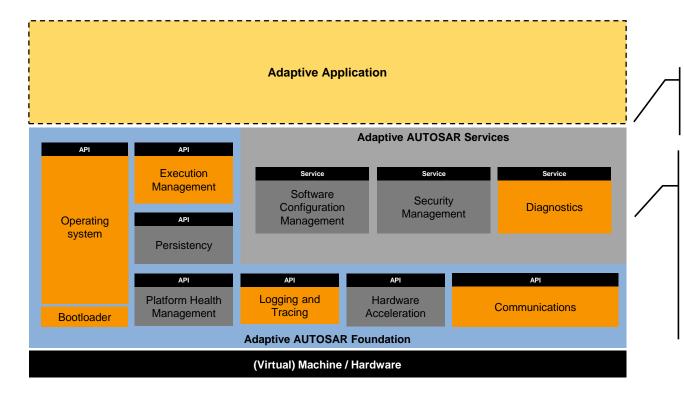
- Collect end-user use-cases for automotive Big-Data
- Determine next steps of the concept project

Phase 2 - Technology Analysis and Prototyping: future

Potentially evaluated technologies (depending on phase 1 results)


- Database: NoSQL
- File management: Hadoop & HDFS
- File format: Parquet
- Search & visualization: Spark / Tableau
- Expected result: Concept paper with recommendations for the further development of ASAM ODS

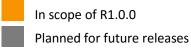
- 1 Current Standardization Projects
 - Roadmap for 2016
 - Major standard developments
- The Future of Test Data Management With ASAM ODS
 ASAM ODS
- 3 Upcoming AUTOSAR Adaptive Platform and Impact ASAM Standards



Positioning of the Adaptive Platform (AP)

Architecture of the Adaptive Platform

Adaptive AUTOSAR API: APIs and services exposed to Applications by functional clusters.


Adaptive AUTOSAR specification:

Behavior of software platform from Application and Network perspective.

Organized in functional clusters, not specification of internal architecture!

Functional Clusters:

- Assemble functionalities of the Adaptive Platform
- Define clustering of requirements specification
- But, do not constrain the SW architecture of a platform implementation
 - ➔ No definition of modules

Potential Impact for ASAM Standards

- OS and EM with dynamic memory allocation: No static memory addresses any more.
 - \rightarrow most likely requires changes in:
 - ASAM MCD-1 XCP
 - ASAM MCD-2 MC (ASAP2)
 - ASAM CDF
- Communication Cluster: Service-based communication via SOME/IP.
 - \rightarrow most likely requires changes in:
 - ASAM MCD-1 XCP
 - ASAM MCD-2 NET (FIBEX)
- Logging and Tracing Cluster: Security-related events.
 - \rightarrow probably requires changes in:
 - ASAM MCD-1 XCP
 - ASAM MCD-2 MC (ASAP2)
- Diagnostic Cluster: New features, potential bi-directional communication.
 - \rightarrow potentially requires changes in:
 - ASAM MCD-2 D (ODX)

Thank you for your attention

Thomas Thomsen

Global Technology Manager

Phone: +49 (8102) 8061-64 Email: thomas.thomsen@asam.net