
ASAM AE XIL-MA

Generic Simulator Interface for Simulation
Model Access

Version 1.0.0

Date: 2014-02-24

Associated Standard

© by ASAM e.V., 2014

Disclaimer

This document is the copyrighted property of ASAM e.V.
Any use is limited to the scope described in the license terms. The license
terms can be viewed at www.asam.net/license

http://www.asam.net/license

Table of Contents

ASAM AE XIL Simulation Model Access Version 1.0.0 3

Table of Contents

Foreword 5

1 Introduction 7

1.1 Overview .. 7

1.2 Motivation .. 7

1.3 What is Hardware in the Loop Simulation ... 8

1.4 Technical Approach .. 8

1.5 Technology Independence ... 9

2 Relations to Other Standards 10

2.1 Backward Compatibility to Earlier Releases ... 10

2.2 References to Other Standards .. 10

2.3 Versioning .. 10

3 General Concepts 11

3.1 XIL Test System Architecture ... 11

3.2 Overview Testbench .. 12

3.3 ASAM Data Types .. 12

3.4 Instance Creation .. 12
3.4.1 Implementation Manifest File ... 13

3.4.1.1 File content ... 13
3.4.1.2 File Naming convention and storage location 15

3.4.2 Testbench Factory ... 16

4 Testbench 17

4.1 Common Functionalities ... 17
4.1.1 Valuecontainer ... 17

4.1.1.1 Overview... 17
4.1.1.2 General Value Container Classes .. 18
4.1.1.3 Application Oriented Value Container Classes 19
4.1.1.4 Attributes .. 20

4.1.2 Document Handling .. 21
4.1.3 Signal Descriptions .. 21

4.1.3.1 Signal File Reading and Writing ... 25
4.1.3.2 General Remarks about Segment-Based Signals 27
4.1.3.3 Signal Segments .. 29
4.1.3.4 Using Signal Descriptions .. 50
4.1.3.5 Signal Description File .. 55

4.1.4 Watcher ... 56
4.1.4.1 General ... 56
4.1.4.2 Using the TimeOut ... 57

4.1.5 Data Capturing ... 58
4.1.5.1 Introduction ... 58

Table of Contents

ASAM AE XIL Simulation Model Access Version 1.0.0 4

4.1.5.2 Capturing .. 58
4.1.5.3 State Diagram of Capturing .. 63
4.1.5.4 Capture Result ... 64
4.1.5.5 Document Handling for Capture Data .. 65
4.1.5.6 Usage of Capturing .. 66

4.2 Model Access Port .. 69
4.2.1 User Concept ... 69

4.2.1.1 General ... 69
4.2.1.2 Model Access Port ... 69
4.2.1.3 Document Handling .. 70
4.2.1.4 States of the MAPort .. 71
4.2.1.5 States of the SignalGenerator .. 72

4.2.2 Usage of this Port .. 75
4.2.2.1 Creation and Configuration .. 75
4.2.2.2 Reading & Writing Model Variables ... 76
4.2.2.3 Stimulating Model Variables ... 78

5 Symbols and Abbreviated Terms 83

6 Bibliography 84

Appendix A. Syntax of Watcher Conditions 85

A.1. Other restrictions .. 87

A.2. Syntax Overview .. 87

Appendix B. Key Value Pairs 90

Figure Directory 91

Table Directory 93

Foreword

ASAM AE XIL Simulation Model Access Version 1.0.0 5

Foreword

The Generic Simulator Interface for Simulation Model Access (XIL-MA) defines
simulator control API commands. It is a subset of the Generic Simulator Interface
(XIL), which also supports measuring, calibration, and diagnosis of electronic control
units (ECU), as well as network access to e.g. CAN buses. Both, XIL and XIL-MA
share the model access port and a couple of general concepts. An simulation tool,
which implements the XIL-MA API will be fully compliant to the XIL API, too.
ASAM developed XIL API as a standard for the communication between test
automation software and hardware-in-the-loop (HIL) testbenches. HIL API enables
users to choose products freely according to their requirements, independent of the
vendor. It will support testbenches at all stages of the function software development
process – MIL1, SIL2, HIL3, etc. After all, XIL API allows engineers to reuse their
existing tests and enables a better know-how transfer from one test bench to the
other, resulting in reduced training costs for employees as well.
While ASAM started to specify the XIL API standard, a group of vendors for offline
simulation tools developed the Functional Mock-up Interface standard (FMI). FMI has
been driven by an EU funded project, called MODELISAR. FMI is a tool independent
standard to support both model exchange and co-simulation of dynamic models. In
order to accomplish coupling of simulation tools with e.g. test tools, such an API has
been also on the agenda with the internal name FMI for Applications. ASAM and
MODELISAR decided to join this part of activities in order to develop a single
standard, resulting in ASAM XIL.
In order to support offline simulation tool vendors, the XIL-MA standard has been
generated, which is freely available, as the FMI standards are. The generic simulator
interface for Simulation Model Access offers the possibility that tests written in early
simulation environments can be directly reused in HIL environments at a later stage,
and vice versa. For the user of this specification exist two packages:

 Standard and

 Implementation Support

In the free public available package standard this specification and an associated
UML model are included. The UML model describes all classes and methods with
their parameters in detail. Main content of the standard is the description of the MA-
port, which shall be used for the remote access to the simulation tools. The port
contains data capturing and signal description. The specification document is an
excerpt of the full XIL API Programmer’s Guide. Due to this fact, it may include some
textual references to XIL.
ASAM e.V. additionally offers an implementation support package, which simplifies
the implementation inside tools and applications. This package includes technology
references of the interfaces for the implementation in python and C#. Also included
are templates as schema files for the defining of stimulus descriptions. Factories are

1
 Model-in-the-Loop

2
 Software-in-the-Loop

3
 Hardware-in-the-Loop

Foreword

ASAM AE XIL Simulation Model Access Version 1.0.0 6

distributed for the generic instantiation of one or more testbenches from different
vendors.

Introduction

ASAM AE XIL Simulation Model Access Version 1.0.0 7

1 Introduction

1.1 OVERVIEW

ASAM XIL was developed to allow to exchange combinations of test automation
software and test hardware. The testbench API separates the test hardware from the
test software and allows a standardized access to the hardware. By means of the
testbench MA-port access to the simulation model is given, e.g. to read and write
parameters, or to capture and generate signals.

1.2 MOTIVATION

HIL technology has been developed over the years by only a few suppliers. Due to
several reasons the architecture of these HIL systems was characterized by a direct
rigid coupling of test automation software and used test hardware. Therefore test
cases directly depend on the used test hardware. The end users perspective is, that
not always the ‘best’ test software could be combined with the ‘best’ testing
hardware.

Know-how could not be transferred from one testbench to the other. This resulted in
additional training costs for employees. Switching to the newest testing technology
and to a new development process stage was difficult because of tool specific
formats and test hardware compatibility issues. This led to the consequence that the
base pre-condition for an exchange of test cases, e.g. between OEM and supplier,
was not fulfilled.

The major goal of all standardization efforts is to allow for more reuse in test cases
and to decouple test automation software from test hardware. Therefore the reuse of
test cases within the same test automation software on different test hardware
systems should be achieved. This will lead to a reduction of effort for test hardware
integration into test automation software.

Software investments and test case development efforts can be long-term protected.
End users may decide on test automation software system on a perspective of many
years without the coercion of being coupled to one test hardware supplier.

Introduction

ASAM AE XIL Simulation Model Access Version 1.0.0 8

1.3 WHAT IS HARDWARE IN THE LOOP SIMULATION

Figure 1: Principle of Hardware-in-the-Loop Simulation

Hardware-in-the-Loop (HIL) simulation has become a well-established verification
technology applied in many ECU development projects today.
By means of XIL technology function tests can be shifted to earlier development
stages to increase the maturity of new software and/or electronics components.
Cost and time expensive test drive cycles which have been performed in former
times directly in vehicle or on conventional testbenches can be substituted by
simulation based operations.
Tests of failure situations or tests of dangerous maneuvers can be shifted into the
computer, at least in parts of the complete test program.
The major advantage is the capability to automate these testbenches. This allows to
reproduce all test cycles and to operate these testbenches 24 h per day.
A closed control loop of today’s automotive electronic system as shown in the left
part of Figure 1 (Controller, output driver, actors, plant, e.g. an engine, sensors and
the input side signal conditioning) is substituted in parts. The electrical interfaces are
retained. Sensors and actors are either replaced by full simulated versions or they
are even attached as original physical load component in the testbench setup.
The plant part of the control loop, i. e. in this example the engine, is replaced
completely by a simulation model, which can be calculated in the appropriate model
precision in real-time.

1.4 TECHNICAL APPROACH

All interfaces of the XIL API can be created via factory methods. This provides the
following advantages:

Introduction

ASAM AE XIL Simulation Model Access Version 1.0.0 9

 All classes, represented by UML-based XIL API object model can be
transformed into interfaces.

 This frees the test code from vendor-specific name space information,
which would be necessary for calling constructors. Thus, code is free of
vendor-specific information, what facilitates the exchange of tests among
different testbenches.

 C# (this is the primary programming language of provided by vendors in the
market and covered by crosstests) does not provide constructors within its
interface concept.

Factory methods may have arguments, in order to provide a comfortable way of
interface creation, and to ensure, that all relevant data has been provided by the user
to create the interface properly. However, not all factory methods do have
arguments. In that case, the user is responsible for a proper configuration of the
interface. Otherwise, an exception is thrown during runtime, indicating that the
interface configuration is not valid.

1.5 TECHNOLOGY INDEPENDENCE

Today’s XIL test automation systems use very different description technologies to
define the test cases, e. g. the script language Python or C#.
Graphical or tabular based notations might also be used but underneath transform to
the mentioned languages.

ASAMs goal has always been to define technology independent standards.Therefore
the object model of the XIL API is defined in UML. This UML model is mapped to
different programming languages. As a result of the mapping process, all XIL API
classes are available in each of the supported programming languages either as
interface definitions or using native data types. A mapping guideline is available for
each programming language which describes how the UML model is converted to the
programming language. Technology references are available for the programming
languages C# and Python (for C# see [5] and for Python see [6]).

There are samples that explain how to use the interfaces described in the UML
model. These samples can be found in a subdirectory within the technology
reference directory.
The separation of UML based reference model also allows adding other technologies
later without the need to modify the API model itself.

Relations to Other Standards

ASAM AE XIL Simulation Model Access Version 1.0.0 10

2 Relations to Other Standards

2.1 BACKWARD COMPATIBILITY TO EARLIER RELEASES

The specification at hand is the first version of an Generic simulator interface for
Simulation Model Access. This specification is an extract of the ASAM AE XIL
Version 2.0.0. base standard. [8]

2.2 REFERENCES TO OTHER STANDARDS

In the XIL API the General Expression Syntax is used for defining watcher conditions.
Not all possible functions and operators of the ASAM GES [2] are required. For
Details, see Appendix Syntax of Watcher Conditions.

Measurement data in XIL API 2.0 includes numerical data, e. g. within CaptureResult
or RecordingResult objects. For streaming this data to file, ASAM XIL 2.0 uses the
definition of Measurement Data Format (MDF) [3].

2.3 VERSIONING

Versioning of the XIL-MA API is done using three numbers: major version, minor
version and revision number. The major number is the actual version, the minor
number the actual maintenance of the version. The revision number is the revision of
the maintenance. These numbers define the interface version of the XIL-MA API.

The version information can be retrieved using the Testbench class. The standard

implementation of the Testbench class returns the following version numbers:

Table 1 Version number

Number Value

MajorNumber 1

MinorNumber 0

RevisionNumber 0

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 11

3 General Concepts

The ASAM XIL-MA standard specifies the Testbench API for usage with MA ports.
The next section will explain the general architecture, which is the basis of the
different interfaces.

3.1 XIL TEST SYSTEM ARCHITECTURE

The following picture gives an overview of a test system in general. The shaded
areas indicate the ports, which are not part of ASAM XIL-MA.

Figure 2: XIL Testbench API with direct port access

A typical XIL testbench consists of a system under test, which is a coupled system of
ECUs, hardware components, and simulated parts of the system, depicted by the
dark grey box at the bottom. The interaction between these parts is managed by
different tools of different vendors, shown in the light grey box. These tools serve
different purposes, such as accessing simulation models. The simulated parts might
be executed by simulation tools or on the basis of compiled code. These tools have
their proprietary means for configuration (orange block).

The XIL-MA API provides a standardized interface to one or more simulation tools by
means of MA Testbench ports, which deal with the simulation model access.

Based on this testbench port interface, a test automation tool could utilize a
standardized access to variables and signals on this port without dealing with
proprietary details of different vendors and their tools. However, in such a setup the
testcase has to implement start and shutdown of the testbench port, which is highly
dependent of the test system. In order to access variables and signals the test case
has also to deal with port-specific addresses and data types.

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 12

3.2 OVERVIEW TESTBENCH

The XIL Testbench API covers the simulation model access (with their hardware and

software components), which is represented by a port (MAPort). It is possible to read

and to write data and to capture and to generate signals.The port initialization is
supported by means of standardized configuration methods and objects.

XIL API provides vendor independent access to the functionalities of a XIL simulator
via port interface definitions for the different kinds of ports. Each tool vendor can
provide an implementation of these interfaces, which is specific for his tool set. Thus,
the user of the XIL Testbench API gains standardized access to the tools of different
vendors.

Note: Testcases directly program initialization sequences.

3.3 ASAM DATA TYPES

ASAM data types are used in the entire UML model. These define the type system
for all scalar basic data types. All complex data types use these base types (e.g., see
chapter Valuecontainer). More information about the ASAM data types is available in
[1].
The following basic ASAM data types are used in the XIL API UML model:

 A_BOOLEAN

 A_BYTEFIELD

 A_FLOAT64, A_FLOAT32

 A_INT64, A_INT32, A_INT_16, A_INT8

 A_UINT64, A_UINT32, A_UINT_16, A_UINT8

 A_UNICODE2STRING

The ASAM data types are included in the model in the sub package
‘XILTypes.ASAMDataTypes’.

3.4 INSTANCE CREATION

In order to maximize independence of test cases from test systems it is not sufficient
to just standardize interfaces of a test system. Rather there should be a generic way
to obtain corresponding instances from any vendor providing a XIL implementation.

Therefore the factory approach is applied. That means instances are obtained from

methods of already existing objects. For example a MAPort instance is created by

invoking the CreateMAPort method on an object implementing the MAPortFactory

interface. In turn such a MAPortFactory object can be obtained from a Testbench

object providing a corresponding property.

Following this approach one can obtain instances for any XIL interface and of any

vendor. Preconditions are the existence of the respective vendor’s Testbench object
and the implementation of the desired interface by that vendor.

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 13

Methods for instance creation are called factory methods. Classes that exclusively
serve the instance creation of other objects are called factory classes. Since factory
classes and methods are also standardized, instance creation is possible in a vendor
independent manner.

Creation of the top-level factory Testbench is done based on descriptive information
that vendors must provide together with their XIL implementations. This description
(Implementation Manifest) is standardized to enable creation in a vendor
independent manner. The respective specification can be found in Implementation

Manifest File. There is one special interface (TestbenchFactory) for utilization of the

descriptive information. It is explained in Testbench Factory.

3.4.1 IMPLEMENTATION MANIFEST FILE

A standard-compliant implementation must comprise a description file providing

information for locating and instance creation of the vendor specific Testbench class.
This file is called Implementation Manifest. Its content and storage location are
standardized as described in the following chapters.

3.4.1.1 File content

The manifest file’s structure must obey the schema definition in the
ImplementationManifest.xsd that is part of the standard. The manifest is actually a list

of references to C# or Python classes implementing the Testbench interface. These
reference are represented by XML elements. As shown in Figure 3 there are two

different reference types corresponding to the interface Testbench and the different

implementation technologies (C# or Python). For instance a

NetTestbenchImplementation element is used to refer to a C# class implementing

the Testbench interface, whereas PyTestbenchImplementation element is used

for Python classes implementing the Testbench interface.

Figure 3: Implementation Manifest files contain a list of elements referring to C# or
Python classes that implement the Testbench interface

Basically a manifest file may contain any number of references to different

Testbench implementations. These references are uniquely identified by their type

and their attribute assignments. The attributes of references to C# classes can be
gathered from Figure 4. References to Python classes have the same attributes (see
Figure 5).

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 14

Figure 4: NetTestbenchImplementation element of the Implementation Manifest

Commonly XIL implementations are delivered as part of software products. The

reference attributes VendorName, ProductName and ProductVersion identify such a

software product by its name, version and vendor. The XilVersion attribute
specifies the XIL standard’s version the respective implementation is based on. And

finally reference type and the attribute TechnologyVersion determine the
implementation technology (C# or Python) and technology version of the respective
XIL implementation.

The content of a reference element provides technical information on code module

and class name of the respective Testbench implementation. This information is

required to find and load the module and create Testbench instances via reflection
mechanisms. Since this kind of information highly depends on the implementation
technology there are different reference elements for C# and Python classes.

References to C# Testbench classes comprise the following elements as shown in

Figure 4. The elements AssemblyName, AssemblyVersion, AssemblyKeyToken,

AssemblyCulture give the so called strong name of the assembly containing the

class that implements the Testbench interface. The element TestbenchClassName
holds the full qualified name of that class.

It is recommended to install the respective assemblies in the global assembly cache
(GAC). So they can be found and loaded by means of their strong name. If not

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 15

installed in the GAC, the assembly location (file system folder) must be specified in

the manifest file by the optional element AssemblyPath.

References to Testbench classes implemented in Python comprise the following

elements as shown in Figure 5. TestbenchClassModuleName specifies the full

qualified name of the Python module containing the Testbench class. And

TestbenchClassName gives the name of that class. There is a third, optional element

LibPaths holding the list of file system folders where the Python modules are stored.

Figure 5: PyTestbenchImplementation element of the Implementation Manifest

3.4.1.2 File Naming convention and storage location

Principally each Implementation Manifest file may contain any number of references

to different Testbench classes. These can be classes of different products or even
different vendors or implementation technologies. However it is recommended that
each vendor provides one (or more) separate Implementation Manifest file(s) for its
XIL implementation(s). So it is not necessary to merge and store manifest information
of different vendors in a single file. But it is up to the client to support several
manifest files.

The name of each Implementation Manifest file must start with the name of its vendor
to avoid name clashes between different vendors. Vendors distributing two or more
manifest files (e.g. with different products or product versions) must ensure unique
names for their files. Implementation Manifest files must have the extension “imf”.

The Implementation Manifest file(s) of a XIL implementation must be copied to a
specific file system folder during installation. The following Table 2 specifies the
storage location on Microsoft operating systems.

General Concepts

ASAM AE XIL Simulation Model Access Version 1.0.0 16

Table 2 Storage locations for Implementation Manifest files (environment variables are

enclosed by % signs)

Operating System Folder

Microsoft Windows XP %ALLUSERSPROFILE%\ASAM\XIL\Implementation

Microsoft Windows Vista %PROGRAMDATA%\ASAM\XIL\Implementation

Microsoft Windows 7 %PROGRAMDATA%\ASAM\XIL\Implementation

It is up to the vendor to ensure manifest files are copied to the proper location.

3.4.2 TESTBENCH FACTORY

The standard defines one interface that serve the creation of Testbench instances in

a vendor independent manner. Testbench instances can be created by calling the

method CreateVendorSpecificTestbench of the TestbenchFactory (see Figure

6). The desired Testbench implementation is selected by passing the respective
vendor name, product name and product version.

Figure 6: TestbenchFactory class

There is a reference implementation of the TestbenchFactory interface that comes

with the XIL standard (C# only). The reference implementation relies on the
Implementation Manifest files (see Implementation Manifest File) in order to find and

create instances of vendor specific Testbench classes. Instance creation of

TestbenchFactory implementations takes place by usual programming language

mechanisms (e.g. calling the new operator). Please, consult the technology

references for information and examples on using the reference implementation.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 17

4 Testbench

4.1 COMMON FUNCTIONALITIES

This chapter describes functionalities of XIL API Testbench which are not specific for
one port. The most important parts of the package Common are described in the
following sections.

Table 3 Packages of Common part

Sub package name Description

Capturing and
CaptureResult

Contains classes which do Capturing and handle the result of
Capturings.

DocumentHandling Gives an overview of all classes which are used to read or write
content from/to the file system in different file formats.

Error Contains common classes used for error handling. Error codes are
defined in the sub package Error.

Signal and
SignalGenerator

Contains classes to describe signal waveforms for general
purpose and furthermore for generating signal waveforms
stimulation use cases. The symbols which used for symbolic
mapping are also described here.

ValueContainer A set of classes which are designed to store values of different
types, e.g. scalar, matrix or map values. Together with the
ASAMTypes and the Collection classes, the value container
classes are the fundamental type system which is used in the
entire UML model.

WatcherHandling Classes being used by the capturing classes for defining trigger
conditions.

4.1.1 VALUECONTAINER

4.1.1.1 Overview

The ValueContainer package provides a set of container classes, which are used to
store data values. These container classes are divided into three categories:

 The first category comprises all general container classes which are either scalars
or which contain elements being accessed by integer based indices, e.g. vectors
and matrices. Concrete sub classes are available for the most important data types

like Boolean, integer, float and string. Some examples are ScalarFloatValue,

StringVectorValue and BooleanMatrixValue.

 In addition, there are more application oriented classes, which are used for
calibration access, for capturing or for signal generation. Examples are the classes

CurveValue, MapValue and SignalGroupValue.

 The third category consists of named collections. These are explained in more
detail in [7].

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 18

All container classes are derived from a common base class named BaseValue. Its

method Type() allows to retrieve the concrete data type of a value container

instance as specified by the enumeration type DataTypes.
It is possible to attach meta information to a value container instance. Examples for
such meta information are the name of the variable or the unit of the value. More
detailed information about meta data can be found in Attributes.

The Value property return copies (not references) of the internal data objects, e.g. a

new instance of VectorValue is returned when using the XVector property on a

MapValue object. So the value itself cannot be changed by altering the returned
instances.
In the following chapters explain the different value container categories and the
concept of meta data information in more detail.

4.1.1.2 General Value Container Classes

General ValueContainer classes represent scalar, vector and matrix values (Figure
7).

Figure 7: General Value classes

All elements inside a composite ValueContainer class (e.g. VectorValue or

MatrixValue) are homogenous, meaning all elements must be of the same type,

which is specified by the class. Class names are prefixed with Int, Uint, Float,

String and Boolean corresponding to type of the managed elements (Figure 8).

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 19

Figure 8: Data types of value elements managed by Value classes ScalarValue and
VectorValue

The ScalarValue classes IntValue, FloatValue, StringValue and

BooleanValue represent a single value of the particular data type.

The VectorValue classes IntVectorValue, FloatVectorValue,

StringVectorValue and BooleanVectorValue represent an ordered sequence of
values. The Count property returns the number of values in the collection.

The MatrixValue classes IntMatrixValue, FloatMatrixValue,

StringMatrixValue and BooleanMatrixValue represent a two dimensional array of

values. The ColumnCount and RowCount properties return the number of values of
each dimension inside the matrix.

4.1.1.3 Application Oriented Value Container Classes

Application oriented ValueContainer classes (Figure 9) are used for more
specialized applications like calibration and capturing.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 20

MapValue and CurveValue classes are widely used for calibration of curve (1D table)
and map (2D table) values. Their X and Y vectors must be either monotonously
increasing or decreasing and the number of rows / columns of the function values
must be equal to the length of the Y / X vector.

SignalValue and SignalGroupValue are used to represent captured signal data.

Figure 9: Application oriented Value classes

4.1.1.4 Attributes

Instances of the Attributes class are used to attach meta data to ValueContainer

objects. The information consists of a list of attribute names and their values. The

name and the value of an attribute are strings (A_UNICODE2STRING).

Figure 10: Attributes class

Some commonly used attributes are predefined. These are:

 Name

 Description

 Unit

It is also possible to add user-defined attributes using the property Property().

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 21

4.1.2 DOCUMENT HANDLING

The classes derived from the abstract class DocumentManager are designed to save

and load data to/from files. Each class derived from the DocumentManager provides

a Load() and a Save() function to store data in a particular file format. E.g. sub
classes are defined for reading and writing signal descriptions, signal generator
properties, and capture results.

Figure 11: DocumentHandling in XIL

4.1.3 SIGNAL DESCRIPTIONS

When testing ECUs via XIL simulation, signals play an important role in different use
cases. In many test cases, model variables are stimulated. In other tests, variables
are captured and the captured data has to be compared with reference signals. For

these use cases, the XIL API introduced the classes SignalDescription,

SignalDescriptionSet and SignalGenerator, as shown in the figure below.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 22

Figure 12: SignalDescriptions and SignalGenerator

A signal description consists of one or multiple segments, e.g. a ramp, followed by
sine, which is denoted as "mySignalDescription_1" in the figure, or simply a constant
signal denoted as "mySignalDescription_2". Many other segment types are also
defined by the XIL API (see below). Such a signal description does not have any
relation to variables of the simulation model. It can be used e.g. as a reference
signal. Multiple signals are aggregated in a signal description set.
In order to use signals for stimulation, a signal generator is used. A signal generator
relates signals to model variables and controls the signal generation process.
When modeling signals, an advanced specification is possible: shows a ramp signal,
denoted as "modulateSignal" and a sine signal ("mySignalDescription_1") whose
amplitude is specified by the ramp. The resulting signal is depicted besides the signal
generator. All parameters of all segment types can be specified by other signals.

Figure 13: Modulate Signal Parameter by further Signals

Another possibility to describe signals is operational signal descriptions: An
operational signal adds or multiplies two signals, as shown in Figure 14.

mySignalGenerator

mySignalDescription_1 „Model\Engine \channelVar1“

mySignalDescriptionSet

mySignalDescription_1
20.0s 10.0s

mySignalDescription_2
30.0s

mySignalDescription_2 „Model\Engine \channelVar2“

mySignalGenerator

mySignalDescription_1 „Model\Dummy \Mod“

mySignalDescriptionSet

modulateSignal

mySignalDescription_1

5.0s

5.0s

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 23

Figure 14: SignalDescriptions and SignalGenerator

In order to compare a signal description for example with sample data, i.e. signals
that are defined by a couple of points in time and corresponding functional values, it
is helpful to transform the signal description into an equivalent format (see Figure

15). Calling the method CreateSignalValue() on a signal description with the
sample time as parameter, creates an according signal value (see chapter

Valuecontainer). Calling method CreateSignalGroupValue() on

SignalDescriptionSet creates a signal group value. If not all of the Y vectors has
the same length, to the shorter ones IDLE values will be added.
IDLE values are the values produced by the IdleSegment as described in chapter

mySignalDescriptionSet

mySignalDescription_1
20.0s 10.0s

mySignalDescription_2
30.0s

operationSignalDescription

Operation = Add

mySignalGenerator

operationSignalDescription „Model\Dummy \Mod“

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 24

Idlesegment.

Figure 15: SignalDescriptions and SignalGenerator (data transformation)

In general the signal description is used to describe a signal for general purpose
usage. A signal can be described by using synthetic waveform elements like ramp or
sine and/or with elements which contain the signal points in form of numerical data.

The entry point is the class SignalDescriptionSet which acts as a container for
signals to group several signals to one signal-set.

The SignalDescription is the abstract base class of

OperationSignalDescription and SegmentSignalDescription.

The class OperationSignalDescription adds or multiplies (depends on operation

property) 2 signals (left and right signal).

The SegmentSignalDescription is used to define a signal waveform based on a

temporal sequence of different segments. Thus the SegmentSignalDescription is
an indexed collection of signal-segments.

mySignalDescriptionSet

mySignalDescription _1
20.0s 10.0s

mySignalDescription _2
30.0s

CreateSignalValue(0.1)

CreateSignalGroupValue(0.1)

X

[

0;

0.1;

0.2;
0.3;

...

]

Y

[

0;

0.15;

0.30;
0.45;

...

]

myChannel_1

SignalValue

myChannel_2

X

[

0;

0.1;

0.2;
0.3;

...

]

Y

[

0;

0.15;

0.30;
0.45;

...

]

myChannel_1

SignalGroupValue

Y

[

2;

2;

2;
2;

...

]

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 25

Figure 16: SignalDescription relations

4.1.3.1 Signal File Reading and Writing

To save the whole content of a SignalDescriptionSet or to load a complete set of

signals into a SignalDescriptionSet there are two classes: The

SignalDescriptionWriter and the SignalDescriptionReader. This concept allows it
to load and save data in different formats. The sti and stz format are standardized in
XIL.

 class _doc_SignalDescription

SignalDescriptionSet

SignalDescription

OperationSignalDescription SegmentSignalDescription

1

1..*

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 26

Figure 17: SignalDescription Reader and Writer

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 27

4.1.3.2 General Remarks about Segment-Based Signals

A segment is the smallest unit that describes the signal form completely for a defined
time period. Properties of a segment are:
Type: Each segment has a read-only property type that indicates the kind of the

segment for post-analysis (SignalSegment.getType(): SegmentTypes).
Comment: Each segment has an optional property comment that can be used by the
tester to write a description linked to the segment definition, for example to help to
understand the complete signal definition.
Duration: Most of the segments have the property duration that specifies the length

in time. The unit of duration is second. The SignalValueSegment and the

OperationSegment have no duration property.
StopTrigger: In addition to the Duration property some segments support the
property StopTrigger. This property is used to define a stop trigger for the segment. It
is allowed to use a DurationWatcher or a ConditionWatcher.
The StopTrigger overrides the Duration property: The evaluation of the segment will
be stopped, if the given Watcher returns TRUE.
If no Watcher object is assigned to the StopTrigger property, the segment will be
evaluated according to the Duration parameter. It will stop after the given duration is
reached.

The other segment parameters/properties are segment specific. For example the

SineSegment has the parameters amplitude, offset, period and phase.

All segment parameters use a symbolic mapping. This means that each parameter is

defined via the abstract Symbol class, and the concrete type of the parameter is one
of the sub-classes of Symbol. This mechanism allows different sub-classes to
implement different definitions (e.g., calculation algorithms) for a segment parameter.

The sub-classes of Symbol are the ConstSymbol class (the segment parameter has

a constant numeric value), the SignalSymbol class (the parameter’s value is

obtained from a SignalDescription) and the StringSymbol class (the parameter’s
value is obtained from another simulation variable).

Thus, besides having a constant value for a segment parameter, the parameter can
also be modulated. An example for this is the amplitude modulation of a

SineSegment. It is not possible to modulate the duration of the segment by another

signal, thus the duration property only accepts the ConstSymbol.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 28

Figure 18: Symbol

Additionally segments can be combined together by operations. So you can for
example add a ramp signal to a noise signal. This operation can be done by the

OperationSegment that can be used in the same way as the native segments.

List of segments:

Synthetic Waveform Segments:

 ConstSegment

 RampSegment

 IdleSegment

 NoiseSegment

 RampSlopeSegment

 SineSegment

 SawSegment

 PulseSegment

 ExpSegment

Data Oriented Segments:

 SignalValueSegment

 DataFileSegment

Complex Segments:

 OperationSegment

 LoopSegment

 class Symbol

Symbol

SignalSymbol

«getter»

+ getSignal() :SignalDescription

«setter»

+ setSignal(signal :SignalDescription)

ConstSymbol

«getter»

+ getValue() :A_FLOAT64

«setter»

+ setValue(value :A_FLOAT64)

StringSymbol

«getter»

+ getValue() :A_UNICODE2STRING

«setter»

+ setValue(value :A_UNICODE2STRING)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 29

4.1.3.3 Signal Segments

CONSTSEGMENT

The ConstSegment is used to generate a part (segment) of the signal with a constant
signal flow. The amplitude of the signal is on a constant value during the whole
duration of the segment.

Mathematical description

Atf)(

A : Amplitude of the signal

Graphical Representation Example:

Figure 19: ConstSegment

Table 4 Parameters ConstSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX(A_FLOAT64)]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the
Duration Parameter.

Unit: -

Range: -

Value Value which is used as signal amplitude.

Unit: -

Range: [MIN(A_FLOAT64) <= Value <= MAX(A_FLOAT64)]

f(t)

0 t

Value

Duration

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 30

RAMPSEGMENT

The RampSegment is used to generate a part (segment) of the signal with a ramp-
shaped signal flow. The amplitude of the signal follows a straight line according to a
linear equation.
The slope of the line is calculated from the given start- and stop-amplitude of the
ramp and the duration of the segment (∆y/∆x)

Mathematical description

1
12)(yt

T

yy
tf

D

1y : Start amplitude

2y : Stop amplitude

DT : Duration

Graphical Representation Example:

Figure 20: RampSegment

f(t)

t

Start

Duration

Stop

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 31

Table 5 Parameter RampSegment

Parameter Description

Duration Duration / run time of the segment

Unit Seconds [s]

Range: [0 < Duration <= MAX(A_FLOAT64)]

Start Start value of the amplitude

Unit -

Range: [MIN(A_FLOAT64) <= Start <= MAX(A_FLOAT64)]

Stop Stop value of the amplitude

Unit: -

Range: [MIN(A_FLOAT64) <= Stop <= MAX(A_FLOAT64)]

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 32

IDLESEGMENT

The IdleSegment sets the signal generation into idle-mode for the given duration.

During this idle time the signal generator will not write to the corresponding model
variable, respectively the memory location of the model variable.

The IdleSegment is normally used to allow other parts of the model to write to the
variable (eg. model-i/o or user interaction).
If the variable was not written during the idle time by some other parts of the model,
the variable is left untouched and will keep its value.

In case of evaluating an IdleSegment to produce numerical data e. g. using the

method CreateSignalValue of the class SignalDescription, the value of NaN

(IEEE 754) must be generated. Please refer to the technology references (see [5]
and [6]).

Mathematical description

none

Graphical Representation Example:

Figure 21: IdleSegment

Table 6 Parameter IdleSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX(A_FLOAT64)]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the
Duration Parameter.

Unit: -

Range: -

f(t)

t

Value

Duration

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 33

NOISESEGMENT

The NoiseSegment is used to generate a part (segment) of the signal with gaussian
noise. That means that the amplitude of the signal is gaussian distributed.
In each model step one noise value is calculated by using a random generator. The
generated random value is than applied against the gaussian distribution to get
amplitude values according to the gaussian bell-shaped curve.

Mathematical description

Gaussian Distribution:

2

2

2

)(

22

1
)(

x

exf

Box-Muller-Method:

From two standard independent random numbers u1 and u2 in the range 0..1 (e.g.
generated via random()) two standard normal-distributed and independent random
numbers z1 and z2 will be created.

ii zx

uuz

uuz

With

)2sin()1ln(2

and

)2cos()1ln(2

212

211

It is possible to generate normal distributed random numbers xi with any mean and
sigma parameters you need.
 : Mean value

 : Standard deviation

Note: The Box-Muller-Method is used by the Python function random.gauss(mu, sigma).

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 34

Graphical Representation Example:

Figure 22: NoiseSegment

Table 7 Parameter NoiseSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Mean Mean value, where the Gaussian distribution is moving

Unit: -

Range: [MIN (A_FLOAT64) <= Mean <= MAX (A_FLOAT64)]

Sigma Standard deviation of the signal amplitude against the mean value

Unit: -

Range: [MIN (A_FLOAT64) <= Sigma <= MAX (A_FLOAT64)]

Seed Start value of the random generator

Unit: -

Range: [-2147483646 <= Seed <= +2147483645]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the Duration
Parameter.

Unit: -

Range: -

f(t)

t

Mean

Duration

Sigma

Sigma

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 35

RAMPSLOPESEGMENT

The RampSlopeSegment is used to generate a part (segment) of the signal with a
ramp-shaped signal flow. The amplitude of the signal follows a straight line according
to a linear equation.
The segment form is similar to RampSegment. Only the parameters are different.

Mathematical description

btmtf)(

m : Slope of the line

b : Offset of the line

Graphical Representation Example:

Figure 23: RampSlopeSegment

f(t)

t

Offset

Duration

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 36

Table 8 Parameter RampSlopeSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset Offset of the ramp

Unit: -

Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Slope Slope of the ramp

Unit: -

Range: [MIN (A_FLOAT64) <= Slope <= MAX (A_FLOAT64)]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the
Duration Parameter.

Unit: -

Range: -

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 37

SINESEGMENT

The SineSegment is used to generate a part (segment) of the signal with a sine-
shaped signal flow. The amplitude of the signal follows a periodical sine-waveform.

Mathematical description

bTt
T

Atf

)(

2
sin)(

A : Amplitude of the Signal

T : Cycle time
 : Initial phase shift as a factor of the cycle time

b : Offset of the Signal

Graphical Representation Example:

Figure 24: SineSegment

f(t)

t

Offset

Duration

Period

Amplitude

0

Phase

(as factor of the period)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 38

Table 9 Parameter SineSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset Offset of the sine waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period Cycle time of the sine waveform

Unit: -

Range: [0 < Period <= MAX (A_FLOAT64)]

Amplitude Amplitude of the sine waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase Initial phase shift as positive or negative factor of the cycle time

Unit: -

Range: [-1.0 <= Phase <= +1.0]

 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift)

 The variation of the period with another signal is not equivalent to
frequency modulation.

StopTrigger To define a stop trigger bei using a ConditionWatcher or DurationWatcher. A
defined StopTrigger will override the Duration Parameter.

Unit: -

Range: -

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 39

SAWSEGMENT

The SawSegment is used to generate a part (segment) of the signal with a saw tooth

shaped or triangle shaped signal flow. The amplitude of the signal follows a
periodical saw tooth waveform.

Mathematical description

A : Amplitude of the Signal

T : Cycle time

 : Duty cycle (ratio of rise-time to cycle-time) as factor of the cycle time
rt : Rise time
ft : Fall time
 : Initial phase shift as factor of the cycle time

b : Offset of the Signal

Graphical Representation Example:

Figure 25: SawSegment

f(t)

t

Offset

Duration

Period

Amplitude

Duty cycle (as factor of the period)

Phase

(as factor of the period)

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 40

Table 10 Parameter SawSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset Offset of the saw tooth waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period Cycle time of the saw tooth waveform

Unit: -

Range: [0 < Period <= MAX (A_FLOAT64)]

Amplitude Amplitude of the saw tooth waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase Initial phase shift as positive or negative factor of the cycle time

Unit: -

Range: [-1.0 <= Phase <= +1.0]

 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase
shift)

DutyCycle Ratio of raise-time to cycle-time as a positive factor

Unit: -

Range: [0.0 <= DutyCycle <= 1.0]

 (use 0.5 to get a triangular shaped signal)

 The variation of the period with another signal is not equivalent
to frequency modulation.

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the Duration
Parameter.

Unit: -

Range: -

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 41

PULSESEGMENT

The PulseSegment is used to generate a part (segment) of the signal with a
rectangular-shaped signal flow. The amplitude of the signal follows a periodical
rectangle-waveform.

Mathematical description

 Tt

TTttb

tTtbA
tf h

h

h

,
0

)(

A : Amplitude of the Signal

T : Cycle time

 : Duty cycle (ratio of high-time to cycle-time) as factor of the cycle time
ht : High-time
 : Initial phase shift as factor of the cycle time

b : Offset of the Signal

Graphical Representation Example:

Figure 26: PulseSegment

f(t)

t

Offset

Duration

Period

Amplitude

Duty cycle (as factor of the period)

Phase

(as factor of the period)

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 42

Table 11 Parameter PulseSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset Offset of the rectangle waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period Cycle time of the rectangle waveform

Unit: -

Range: [0 < Period <= MAX (A_FLOAT64)]

Amplitude Amplitude of the rectangle waveform

Unit: -

Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase Initial phase shift as positive or negative factor of the cycle time

Unit: -

Range: [-1.0 <= Phase <= +1.0]

 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase
shift)

DutyCycle Ratio of high-time to cycle-time as a positive factor

Unit: -

Range: [0.0 <= DutyCycle <= 1.0]

 (use 0.5 to get a symmetric rectangular shaped signal, use 1.0
to get a constant value)

 The variation of the period with another signal is not equivalent
to frequency modulation.

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the Duration
Parameter.

Unit: -

Range: -

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 43

EXPSEGMENT

The ExpSegment is used to generate a part (segment) of the signal with an
exponential-shaped signal flow. The amplitude of the signal follows an exponential
curve.

Mathematical description

beAtf

t

)1()(

A : Amplitude of the Signal
 : Time constant (tau)

b : Offset of the Signal

Graphical Representation Example:

Figure 27: ExpSegment

f(t)

t

Start

Duration

Stop

0

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 44

Table 12 Parameter ExpSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Start Start amplitude (Offset of the Signal)

Unit: -

Range: [MIN (A_FLOAT64) <= Start <= MAX (A_FLOAT64)]

Stop Stop amplitude

(Note: Amplitude of the Signal A = Stop – Start)

Unit: -

Range: [MIN (A_FLOAT64) <= Stop <= MAX (A_FLOAT64)]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the
Duration Parameter.

Unit: -

Range: -

Tau Time constant of the e-curve

Unit: Seconds [s]

Range: [0 < Tau <= MAX (A_FLOAT64)]

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 45

SIGNALVALUESEGMENT

The SignalValueSegment is used to generate a part (segment) of the signal which

directly uses numerical data. The amplitude is the result of the data points of the
numerical data and the given interpolation type.
Normally this segment is used to replay measured data.

The numerical (respective measured) data is stored in a SignalValue object (see
chapter Valuecontainer) which is given during creation of the segment or during
configuration of the segment. The duration of the segment is derived from the time
vector.

The serialization of the numerical data (e.g. SignalDescriptionSet.Save()) is
done by generating a flat MATLAB-File with two vectors of type double. One vector
describes the time vector, and the other vector describes the corresponding signal
amplitude values.
The duration of the segment is implicitly derived from the time vector. For more
information see chapter Signal Description File.

Table 13 Parameter SignalValueSegment

Parameter Description

SignalValue SignalValue object which contains the time-vector and the data-vector

Unit: time-vector: Seconds [s], data-vector: -

Range: [MIN (A_FLOAT64) <= time, data <= MAX (A_FLOAT64)]

Interpolation Interpolation method

Unit: -

Range: enum InterpolationTypes

eFORWARD: Next data point will be used immediately
(staircase forward)

eBACKWARD: Actual data point will be used until next data
point (staircase backward)

eLINEAR: Linear interpolation

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 46

DATAFILESEGMENT

With the DataFileSegment it is possible to use numerical data, which is stored in a
file, within a signal description. The data file is typically a measurement data file
which contains some measured signals and one or more time axis resp. raster
information. The DataFileSegment holds a link to the data file. The
DataFilesSegment does not store or serialize the used numerical data. So it is very
easy to switch between different numerical data by referencing another file, e.g. a
measurement data file from a newer measurement that should be used for the signal
description. Another goal is to use the same measurement data file in different
contexts, like stimulation and reference signal comparison.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 47

Table 14 Parameter DataFileSegment

Parameter Description

Duration Duration / run time of the segment

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

Filename Name or link of the data file.

DataVectorName Name of the data vector / signal to be use

TimeVectorName Name of the time vector / raster to use

Interpolation Interpolation method

Unit: -

Range: enum InterpolationTypes

eFORWARD: Next data point will be used immediately
(staircase forward)

eBACKWARD: Actual data point will be used until next data
point (staircase backward)

eLINEAR: Linear interpolation

Start Start point of the numerical data to be used.

Unit: Seconds [s]

Range: [0 < Duration <= MAX (A_FLOAT64)]

StopTrigger To define a stop trigger bei using a ConditionWatcher or
DurationWatcher. A defined StopTrigger will override the Duration
Parameter.

Unit: -

Range: -

ChannelSource The channel source of the two channels (signals) TimeVector and
DataVector. The channel source typically contains the network node
name or the task name.

ChannelPath The channel path of the two channels (signals) TimeVector and
DataVector. The channel path typically contains the device name or
platform name.

GroupName The group name of the two channels (signals) TimeVector and
DataVector. The group name typically contains the task name, the
raster name or the event name.

GroupSource The group source of the two channels (signals) TimeVector and
DataVector. The group source typically contains the network node
name, the tool name or the task name.

GroupPath The group path of the two channels (signals) TimeVector and
DataVector. The group path typically contains the device name or
platform name.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 48

LOOPSEGMENT

The LoopSegment is used to repeat its containing child segments. The loop segment
can be used to repeat sequences of synthetic segments, for example a trapezoid
shaped wave form that should be evaluated/executed for a couple of times designed
with a leading RampSegment for the rising edge, a following ConstSegment and a
trailing RampSegment for the falling edge.The total number of executions/evaluations
is given by the loop count property.

Table 15 Parameter LoopSegment

Parameter Description

LoopCount The number of times the child segments will be executed / evaluated.

Unit: -

Range: [1 <= LoopCount <= MAX (A_UINT64)]

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 49

OPERATIONSEGMENT (OPERATIONTYPES)

The OperationSegment is used to generate a part (segment) of the signal which is a
combination of two other segments. The two segments are combined by a
mathematical operation like addition or multiplication. The amplitude of the signal
follows the calculated result. The duration of the resulting segment is derived from
the shorter segment.

Mathematical description

operationoptSoptStf ,)()()(21

1S : First segment / first operand

2S : Second segment / second operand

Table 16 Parameter OperationSegment

Parameter Description

leftSegment left segment object (left operand s1)

Unit: -

Range: -

rightSegment right segment object (right operand s2)

Unit: -

Range: -

Operation Operation which is used to calculate the corresponding signal

Unit: -

Range: enum OperationTypes

 eADD: Addition (y(t) = s1(t) + s2(t))

 eMULT: Multiplication (y(t) = s1(t) * s2(t))

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 50

4.1.3.4 Using Signal Descriptions

Each SegmentSignalDescription consists of one or more segments. The sequence
diagram show the creation of exemplary signal types.

After creating instances of the segments, these instances are added to the
SegmentSignalDescription object.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 51

Figure 28: Create Segment Signal Description Example

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 52

CREATING AN OPERATION SIGNAL

The sequence diagram Figure 29 is describing the creation of an OperationSignal

in detail. It consists of two SegmentSignalDescriptions which are combined by the

given operation. The SignalDescriptions itself can have more than one signal

segment inside. In this case the first has 2 signal segments (RampSegment and

SawSegment) and the second has only one signal segment (SineSegment). The
operation in this example is Multiplication.

Figure 29: Create OperationSignal

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 53

CREATING A WOBBLE SIGNAL

In this example (Figure 30) a periodic signal is created. The frequency property is
described by a saw signal, so that the sine signal is wobbling.

Figure 30: Create a wobbling signal

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 54

SIGNAL DESCRIPTION SET

In this example (Figure 31) the access to a signal description set is shown. Two
signal descriptions, already created before, are added to the signal description set.
Then the set is queried for the names and the contained descriptions. Each of the

descriptions is converted into a SignalValue object.

Figure 31: Create SignalDescriptionSet

LOADING THE SIGNAL DESCRIPTION

The Figure 32 shows the alternative way to get a signal description set: via loading
an existing set from a STI file.

Figure 32: Load a SignalDescriptionSet

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 55

SAVING THE SIGNAL DESCRIPTION

Figure 33 shows how to save a signal description set to a file for further reuse.

Figure 33: Save SignalDescriptionSet

4.1.3.5 Signal Description File

The signal description file is used to serialize objects of type SignalDescriptionSet,
and furthermore to serialize objects of type SignalGenerator.
The signal description file is an XML file with the file extension STI. The format of the
STI file is defined via an XML schema definition file (see
SignalDescriptionFormat.xsd).
All signals and segments are serialized in their corresponding XML tags. Due to
performance issues the numerical values of the SignalValueSegment are serialized
in a separate MATLAB file (.mat) and not in the XML file.
Each mat file contains two MATLAB arrays based on MATLAB data type double (64-
Bit-IEEE-Floatingpoint). One array represents the time values and one array the
signal values. Both arrays have the same length. Their dimension is (1 x N).
Each array is identified by its own name. The name of the time value array and the
name of the signal value array inside a mat file are specified in the STI file.
Example:

MyTimeVector = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5];

MyDataVector = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0];

The MATLAB file use the file format Level 5 [4].
In addition it is possible to serialize the numerical data of multiple
SignalValueSegments in one MATLAB file to get a better performance and to
consume less memory. This is only possible, if the numerical data of the
SignalValueSegments have the same time axis and the same length. E.g. the origin
of the data was the same measurement and same raster. The MATLAB file will then
contain one time vector and several data vectors which all are of the same length.
To achieve better data exchange by a STI file there is also the possibility to use a zip
archive. Such a zip archive contains exactly one STI file and the eventually needed
MATLAB files. The file extension of the zip archive is STZ.
The name of the zip-archive (STZ-file) and the name of the containing STI-file may
be different.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 56

4.1.4 WATCHER

4.1.4.1 General

The Watcher is designed as a generic event generator. It can be used e.g. for the
trigger definition of captures.

Figure 34: Testbench Watcher

XIL API distinguishes between two watcher types:

1. Watchers that get activated if a specified condition becomes true (i.e. a simulation
variable takes on a specific value)

2. Watchers that get activated after a specific amount of time

The first type of watchers is implemented in the ConditionWatcher class. The

second type is implemented in the DurationWatcher class.

ConditionWatcher

«getter»

+ getCondition() :A_UNICODE2STRING

+ getDefines() :StringNamedCollection

+ getTimeOut() :A_FLOAT64

«setter»

+ setCondition(condition :A_UNICODE2STRING) :void

+ setDefines(defines :StringNamedCollection) :void

+ setTimeOut(timeOut :A_FLOAT64) :void

«data type»

Collections::StringNamedCollection

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) :A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) :A_UNICODE2STRING

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) :A_UNICODE2STRING

«getter»

+ getCount() :A_UINT64

+ getNames() :A_UNICODE2STRING[]

Watcher::Watcher

DurationWatcher

«getter»

+ getDuration() :A_FLOAT64

«setter»

+ setDuration(duration :A_FLOAT64)

1

Defines

1

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 57

DURATIONWATCHER

The DurationWatcher fires after a specified duration (given by the property

Duration) relative to the watcher activation. For details on the behaviour of the

DurationWatcher in the context of a capture see section Capturing.

See also property DurationUnit of Capture for the interpretation of the property

Duration of the DurationWatcher. This is different for the values eSECONDS and

eSAMPLES of the property DurationUnit of class Capture.

CONDITIONWATCHER

The ConditionWatcher fires when the condition specified by the property

Condition becomes true after its activation. The syntax of the condition is defined in
Syntax of Watcher Conditions. The condition syntax is validated when the property

Condition is set. As soon as the specified condition becomes true, the

ConditionWatcher fires.

The ConditionWatcher’s condition may contain signals or parameters of the
simulation model. To shorten the condition expression, aliases for the simulation
variables are used which are mapped to model paths. The mapping can be defined
via the property ‘Defines’. The use of aliases makes a condition more readable for
humans and leads to a decoupling of the test case description from the simulation
model. All mappings of aliases used in the condition expression must be added to the
StringNamedCollection accessed by the Defines property. The condition and both

sides of the ‘Defines’ mapping are of type A_UNICODE2STRING, e.g. “velocity" is

mapped to "Model Root/Subsystem/Vel/Value".

4.1.4.2 Using the TimeOut

Some method calls may be blocking and insist on a watcher condition to become

true, in order to end properly. As an example, the Capture.Fetch method with the

parameter whenFinished := TRUE insists on a watcher condition to become true to
end and return. In order to prevent the program of blocking endlessly, the property

TimeOut of the ConditionWatcher should be set. This ensures, that the

ConditionWatcher stops evaluating its condition and fires its event as soon as the

duration given by TimeOut is elapsed.

If a timeout value of zero is given, the ConditionWatcher fires its event immediately

and the specified condition is ignored. The default value of TimeOut is -1.0 for an
infinite timeout.

Note: The interpretation of the property TimeOut of a watcher used in the context of

Capture depends on the value of the property DurationUnit of Capture; it may

be interpreted as number of samples or duration in seconds!

See also property DurationUnit of the Capture for the interpretation of the

parameter delay. This is different for the values eSECONDS and eSAMPLES of

DurationUnit.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 58

4.1.5 DATA CAPTURING

4.1.5.1 Introduction

Capturing is a process of acquiring data in a continuous data stream. It guarantees
that all process data can be retrieved as they occur related to the real-time service
respective to the capture service task. The data aquired can be retrieved after
completion of this process or even while it is still in progress.

The classes in the Capturing and in the Capture Result package are used to define
captures, to control the execution of capturing and to obtain the measured data as
results. They are located in the Testbench Common package since they are used for
MAPort, ECUMPort and NetworkPort.

4.1.5.2 Capturing

The main class of the Capturing package is the class Capture (Figure 35). It is used
to define captures and to control the execution of capturing.

Figure 35: The class Capture

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 59

CAPTURE

An instance of class Capture represents a capture definition. A capture is created by

the port for which a capture shall be defined (MAPort, ECUMPort or NetworkPort).

The capture is configured by setting the properties or calling the methods shown the
table below:

Table 17 Configuration Properties and Methods of Capture

Property /Method Description

Variables Defines the variables for capturing. Only
complete sets of variables can be set.

Each new property assignment will clear and
reset the variable list.

Downsampling Defines the downsampling factor. A
downsampling of n specifies that every nth
value of the acquired data - based on the
specified task (raster) - will be contained in the
CaptureResult. The default is 1 (no
downsampling). If downsampling is not
supported by the XIL Server an exception will
be thrown (eCOMMON_NOT_SUPPORTED).

(optional property)

DurationUnit Specifies wether the unit used for the x axes
of CaptureResults is timebased (in seconds)
or sample-based (in integer values, 0, 1, 2
etc.). The enumeration values eSECONDS
and eSAMPLES of DurationUnit can be
assigned. The default is eSECONDS. If

eSAMPLES is set, the parameter delay of the

methods „SetStartTriggerCondition“

and „SetStopTriggerCondition“,the

duration of the DurationWatcher and the

TimeOut of the ConditionWatcher are

interpreted as A_INT32. If eSECONDS is

set, these values are are interpreted as

A_FLOAT64.

MinBufferSize Defines the minimum buffersize [byte] of the
real-time service.

The buffer size has to ensure continuous
measurement for the specified duration.

As a default, the complete available buffer is
reserved.

Retriggering Retriggering means that after receiving a stop
trigger the data acquisition is waiting for a
start trigger again. The Retriggering property
is an integer that is interpreted as follows:

Retriggering = 0, no retriggering. This means
that the given start trigger condition is
watched once.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 60

Property /Method Description

Retriggering = N, where N is the (positive)
number of consecutive start/stop trigger
sequences. (Example: N = 1 means that the
start trigger condition is watched two times,
first time as normal trigger, second time as a
first retrigger.)

Retriggering = -1, defines an infinite number of
start/stop trigger sequences.

If the Retriggering value is not valid, an
exception is thrown.

SetStartTriggerCondition Sets the start trigger condition

See also DurationUnit for the interpretation

of the parameter delay. This is different for

the values eSECONDS and eSAMPLES of

DurationUnit.

SetStopTriggerCondition Sets the stop trigger condition.

See also DurationUnit for the interpretation

of the parameter delay. This is different for

the values eSECONDS and eSAMPLES of

DurationUnit.

After configuration of the Capture object, the method Start is called to put the
Capture from state eCONFIGURED into the state eACTIVATED. In eACTIVATED,
data acquisition starts if the start trigger condition becomes true. If no start trigger is

set, data acquisition starts immediately after calling method Start.

Note: The Method Start is non-blocking. It returns immediately after being called – even if

the capturing has not been started yet.

The capturing is stopped either if the stop trigger condition becomes true or by calling

the method Stop explicitly.

Note: The start trigger is defined by a ConditionWatcher object, the stop trigger is defined
by either a ConditionWatcher or a DurationWatcher object.

This allows stopping the data acquisition after a specific amount of time
(DurationWatcher) or according to a specific condition (ConditionWatcher). If no stop

trigger is set, the data acquisition runs until the method Stop is called.

The method ClearConfiguration clears any set configuration, releases all ressources
and stored data.

Accessing the property State allows to observe the current capture state, e.g. to

check if the capture state is equal to eRUNNING indicating that the start trigger
occurred already.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 61

Different ways to access the acquired data of a Capture object

Property CaptureResult
Returns a CaptureResult object that contains all acquired data of the Capture, from
beginning of the data acquisition til the end of data acquisition.
If no data has been acquired (e. g. no start trigger condition has become true), the
corresponding SignalValue objects within the CaptureResult have the length of 0,
which means they are empty.
Access to this property is allowed in Capture state eCONFIGURED only.

Method Fetch

Returns a CaptureResult object that contains all acquired data since the last call of

Fetch.

If Fetch is called for the first time, it returns a CaptureResult object that contains all

acquired data of the Capture from beginning of the data acquisition til the call to

Fetch or since data acquisition has started, if Fetch is called for the first time.

If no data has been acquired meanwhile, (e. g. no start trigger condition has become

true), the corresponding SignalValue objects within the CaptureResult have the
length of 0, which means they are empty.

If the captured data is stored to file (e.g. use of CaptureResultMDFWriter), a call to

Fetch raises an exception.

The call of this method is allowed in Capture state eACTIVATED, eRUNNING,

eFINISHED only.

Note: There is a parameter, whenFinished, in order to change the method’s semantic und

provide more convenience to the user.

whenFinished := FALSE
The method semantic is as described above.

whenFinished := TRUE
The method semantic is as described above, but additionally the call is blocked until

the Capture state eFINISHED has been reached.

Motivation: this is a convenient way to wait until the Capture’s data acquisition has
finished within just one call. However, the user has to ensure that the state

eFINISHED is reached at all. Otherwise, the call to Fetch will block indefinitely. Best
practice is, either to provide start and stop trigger conditions, that become true within

an expected time, or by defining a timeout via the TimeOut property of the

ConditionWatcher object in order to force the corresponding watcher to fire its

event after the configured timeout has elapsed.

Special cases: Delayed Triggering

When setting a start or a stop trigger for a Capture object, it is possible to set a delay.
In case the delay is not zero, this leads to the following behaviour, as depicted in the
following Figure 36:

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 62

Figure 36: Start and Stop Trigger used

If the delay for the start trigger is positive, the capturing starts at the specified amount
of time after the start trigger became true – or in case no start trigger has been

specified, the capturing starts the specified amount of time after the Start() method

has been called. If the delay for the start trigger is negative, the capturing starts the
specified amount of time before the start trigger occurred, i.e. the capture result will
contain even values before the start trigger became true. Obviously, this case is
limited: It is not possible to obtain measured values which occurred before the call of

the Start() method.
If the delay for the stop trigger is positive, the capturing stops the specified amount of

time after the stop trigger occurred (or Stop() is called resp.). If it is negative, it stops
the specified amount of time before, i.e. the capture result will not contain the
measured values that occurred during the delay time before the stop trigger occurred

(or Stop() is called resp.). This results into the “implicit min duration” or “implicit max

duration” of the capturing (see Figure 36).

Note: The occurrence of the start trigger event indicates the zero-time of the capture result. If
no start trigger is given, the occurrence of the Capture.Start() method call indicates
the zero-time of the capture result.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 63

4.1.5.3 State Diagram of Capturing

Figure 37: Capturing state diagram

eCONFIGURED

After creation, a Capture object is in state eCONFIGURED. In this state, the capturing is

defined / configured.

It remains in this state, until the Start method is called, which changes the state to

eACTIVATED.

eACTIVATED

In this state, the Capture waits until the start trigger condition becomes true and then

switches into eRUNNING. If no start trigger is set, it swichtes immediately into

eRUNNING right after entering eACTIVATED.

A Stop method call switches into eCONFIGURED.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 64

eRUNNING

While residing in this state, data is acquired. It remains in this state, until

 a Stop method call switches into eCONFIGURED

 the stop trigger becomes true and Retriggering == 0:

it switches to eFINISHED

 the stop trigger becomes true and Retriggering <> 0:

it switches to eACTIVATED and is again waiting for the next start trigger

eFINISHED

This state is reached as soon as the last stop trigger condition becomes true
according to the retriggering definition.

It remains in this state, until a Stop method call switches into eCONFIGURED.

In case of Retriggering == -1, this state cannot be reached, since this changes
between eACTIVATED and eRUNNING.

4.1.5.4 Capture Result

Figure 38 Capture results

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 65

CaptureResult

A CaptureResult object holds the data acquired by a Capture object. It provides

access to objects of type ValueContainer::SignalGroupValue which holds the
sampled data.
Capture results can contain 1 to n Signal Groups. This is possible, because Capture
results can be created by Capturing itself or reading MDF files. Another possibility is
the capturing on multi processor platforms. In such a case for each processor an own
value acquisition takes place. This will be mapped on separate signal groups. Each
signal group have independent start and stop time points.
SignalValue and SignalGroupValue contain time stamp / axis (time lane) and
separately the function value(s) [for each variable an own data lane]. Each Signal
Group value has its own time axis.

MetaData

Via the MetaData association, additional information can be added to the

CaptureResult.

4.1.5.5 Document Handling for Capture Data

Figure 39: Document Handling

CaptureResultReader & CaptureResultWriter

These classes represent abstract super classes for the concrete reader and writer
classes. They provide a Load or a Save method in order to load and to save

CaptureResult objects.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 66

CaptureResultMDFReader

This class handles the loading of MDF files [3]. The loaded data structure is stored in

a CaptureResult object.

The used MDF format is identified by a Version property. If the version is not

selected, the version of the file which shall be load is determined and shall be used.
The determined version is set into the version property. In case the determined
version is not supported by the user an exception will be thrown.

CaptureResultMDFWriter

This class handles the saving of CaptureResult objects compliant to the MDF
format.
The used MDF format is identified by a version property. If the version is not
selected, the highest by vendor supported version will be used. If selected version is
supported by the vendor, captured data will be stored in the specified format,
otherwise an exception will be thrown.

CaptureResultMemoryWriter

In case a CaptureResult is not stored in the file system during the capturing

process, an object of the CaptureResultMemoryWriter class is used as writer

instance. Instead of streaming the capture to disk, the CaptureResult is held in the

RAM.

Note: CaptureResultMDFWriter and CaptureResultMDFReader uses a version

property for the identification of the used MDF format. The following syntax is used for
version identification:
Major.Minor.[Maintenance]

For the different items a sequence of numbers is used. Each reader and writer can
support different versions of the MDF file format.

4.1.5.6 Usage of Capturing

Capturing with Watcher

The following sequence diagrams Figure 40, and Figure 41 show how to use
capturing. First, a Capture object has to be configured: Here, the instance of the

capture object is created by an instance of the MAPort. Then, all variables that shall
be captured are added to the capture's list of variables. To define the beginning and
the end of the capture, two watcher objects are created. For a simple human
understanding of the trigger conditions, defines are created. A define relates a name
to the path of a model variable. These names are used in the conditions of the
watcher objects. Finally, the watcher objects are set as start and stop triggers for the
Capture object during configuration.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 67

Figure 40: Usage of capturing with Watcher (Part 1)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 68

Figure 41: Usage of capturing with Watcher (Part 2)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 69

4.2 MODEL ACCESS PORT

4.2.1 USER CONCEPT

4.2.1.1 General

The Model Access port is the central point for managing access to the model,
simulated on the XIL simulator. This port provides functionality for read- and write-
access to the model, to set up capturing and stimuli, and to manage model variables.
When using this port, it is required that all initialization of the XIL simulator, like
download and start of the model, has been done previously.
The ModelAccessPort-package is related to to the packages "Common:Capturing",
"Common:SignalGenerator" and "Common:CaptureResult". The two latter ones are

not sub-packages of ModelAccess as they are also used by the ECUMPort and the

ECUCPort.

4.2.1.2 Model Access Port

Figure 42: Model Access Port

Class MAPort

On the one hand, this class provides general functionality like for example
functionality to get information about available model variables, their readability and
writeability and to read and write model variables. On the other hand, it provides

initialization functionality to CreateCapture and SignalGenerator instances.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 70

Figure 43: Signal Generator

Class SignalGenerator

A SignalGenerator defines stimuli and manages their execution. For the definition

of a stimulus, a SignalDescriptionSet is referenced by the SignalGenerator.

The signals from the SignalDescriptionSet are assigned with model variables in
the "Assignments" collection. For the management of the stimulus, functionality is
provided for downloading the stimulus to the XIL simulator, for starting, stopping, and
pausing it and for observing its current state.

4.2.1.3 Document Handling

Figure 44: Document Handling

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 71

SignalGeneratorReader & SignalGeneratorWriter

These classes are abstract super classes for the concrete reader and writer classes.

These classes provide a Load or a Save method resp. to load and to save

SignalGenerator objects.

SignalGeneratorSTIReader

This class handles the loading of a SignalGenerator object stored in a STI files. STI

is a file format for SignalGenerator objects which is also part of the XIL API

standard. The loaded data structure is stored in a SignalGenerator object.

SignalGeneratorSTIWriter

This class handles the saving of SignalGenerator objects in STI format. STI is a file

format for SignalGenerator objects which is also part of the XIL API standard.

4.2.1.4 States of the MAPort

Figure 45: MAPort state diagram

Figure 45 shows the state diagram of the MAPort. There are three states,

eSIMULATION_RUNNING, eSIMULATION_STOPPED, and eDISCONNECTED. After

creation, the MAPort instance is always in state eDISCONNECTED. Following the states

are explained:

Table 18 State of the MAPort

State Description

eDISCONNECTED The port cannot be used for simulation purposes
because there is no connection to the hardware

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 72

eSIMULATION_RUNNING Calculation of simulation model is running, Capturing
and Signal Generation is possible

eSIMULATION_STOPPED Calculation of simulation model is not running.

Table 19 MAPort states

e
D

IS
C

O
N

N
E

C
T

E
D

e
S

IM
U

L
A

T
IO

N
_

S
T

O
P

P
E

D

e
S

IM
U

L
A

T
IO

N
_

R
U

N
N

IN
G

Method Configure x

Method CreateCapture x x

Method CreateSignalGenerator x x

Method Disconnect x x

Method Dispose x

Method GetDataType x x

Property getState x x x

Property getTaskNames x x

Property getVariableNames x x

Method IsReadable x x

Method IsWritable x x

Method Read x

Method StartSimulation x

Method StopSimulation x

Method Write X

State transitions are only successful, if all preconditions are fulfilled and no error
occurs during the transition. Otherwise the previous state is not changed.
Methods, which trigger a state change, will throw an exception if the state change
could not be processed successfully.

4.2.1.5 States of the SignalGenerator

The state of the SignalGenerator class can be queried at any time by the method

SignalGenerator.getState().

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 73

Figure 46: Signal generator state diagram

ePAUSED

Final

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

destruction of SignalGenerator

SignalGenerator::LoadToTarget

SignalGenerator::DestroyOnTarget

SignalGenerator::Stop()

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

SignalGeneratorFactory:

CreateSignalGeneratorXXX

SignalGenerator::Pause()

SignalGenerator::Stop()

SignalGenerator finished

SignalGenerator::

DestroyOnTarget

SignalGenerator::

DestroyOnTarget

SignalGenerator::Start()

SignalGenerator::Start()eRUNNING

eREADY

eFINISHED

eSTOPPED

eIN_CONFIGURATION

*1
*2

Load

*1

*1

*1

*1*1

*1:
get Assignments
get ConfigurationSettings
get ConfigurationSignalSettings
get Elapsed Time

get SignalDescriptionSet
get state
Save

*2:
set Assignments

set ConfigurationSettings
set ConfigurationSignalSettings
set SignalDescriptionSet

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 74

Table 20 SignalGenerator states

e
IN

_
C

O
N

F
IG

U
R

A
T

IO
N

e
R

E
A

D
Y

e
F

IN
IS

H
E

D

e
R

U
N

N
IN

G

e
P

A
U

S
E

D

e
S

T
O

P
P

E
D

Method DestroyOnTarget X X X X X

Property getAssignments X X X X X X

Property getConfigurationSettings X X X X X X

Property getConfigurationSignalSettings X X X X X X

Property getElapsedTime X X X X X X

Property getSignalDescriptionSet X X X X X X

Property getState X X X X X X

Method Load X

Method LoadToTarget X

Method Pause X

Method Save X X X X X X

Property setAssignments X

Property setConfigurationSettings X

Property setConfigurationSignalSettings X

Property setSignalDescriptionSet X

Method Start X X X X

Method Stop X X

State transitions are only successful, if all preconditions are fulfilled and no error
occurs during the transition. Otherwise the previous state is not changed.
Methods, which trigger a state change, will throw an exception if the state change
could not be processed successfully.

eIN_CONFIGURATION

After creation, a SignalGenerator object is in state eIN_CONFIGURATION. In this
state, the signal generation is defined / configured. Usually, it is loaded to the XIL
simulator target, when configuration has been done.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 75

eREADY

After loading a defined signal description set to the XIL Simulator target, the

SignalGenerator object is in state eREADY. In this state, it waits for being started.

eRUNNING

After starting the signal generation, the SignalGenerator object is in state

eRUNNING. In this state, the model variables are stimulated by the actual signals as
defined.

eFINISHED

If signal generation is finished, this state is entered.

ePAUSED

Signal generation can be paused. In this case, state ePAUSED is entered. Leaving this
state the signal generation resumes, and does not start at beginning.

eSTOPPED

If the signal generation is stopped, this state is entered.

4.2.2 USAGE OF THIS PORT

In this chapter, the usage of this port is described by means of some examples. It is
shown how to set up the port, how to read and write model variables and how to set
up a signal generator or a capture. How to use captures is shown in the chapter Data
Capturing.

4.2.2.1 Creation and Configuration

Instances of MAPort are created by calls to method CreateMAPort of a

MAPortFactory object. It returns a MAPort instance with the name given as

parameter. The MAPortFactory object can be obtained from the Testbench object

that provides a corresponding property.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 76

Figure 47: Process of MAPort creation and configuration

Configuration of the new port instance is a two-step process (see Figure 47). First a

vendor specific configuration file has to be loaded via method LoadConfiguration.
Besides other vendor specific port settings this file particularly specifies the model file
to be executed on the simulator. The model file path can be queried from or changed

by a corresponding property of the MAPortConfig object that is returned by

LoadConfiguration.

The second step of configuration is calling the Configure method and passing the

MAPortConfig object created in step one. This establishes a connection to the

hardware and checks whether a simulation model has already been loaded or even

started. If no model is loaded the simulation model passed in MAPortConfig is

loaded and the state is set to eSIMULATION_STOPPED. Afterwards the simulation
model is ready for execution. This behaviour can also be forced by setting the

Configure method’s parameter forceConfig to true. In this case a running

simulation model will be stopped and replaced by the specified one. If the

forceConfig parameter is false an already loaded simulation model will not be
replaced even if different from the specified one. Furthermore a running simulation

will not be stopped, so simulation state will remain eSIMULATION_RUNNING in this
case.

4.2.2.2 Reading & Writing Model Variables

The sequence diagram in Figure 48 depicts how to handle and how to access model
variables: First, an instance of the model access port is created. When such an
instance has been created, it is assumed that the XIL simulator has been initialized

and a simulation model is running. The instance of the MAPort is used to request all
available model variables and all tasks (timing raster) existing in the simulation. A

Capture object is created by the MAPort instance with a raster specified by one of the

existing tasks.

Note: Due to the fact that the adaptation of a simulation model for a specific XIL simulator is
vendor specific:

XIL User

(from Common)

:MAPort

MAPortFactoryTestbench

MAPortConfig

pass

MAPortConfig

getMAPortFactory():
MAPortFactory

CreateMAPort(name) :MAPort

LoadConfiguration(filepath) :MAPortConfig

Configure(config, forceConfig)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 77

 the list of available variable names of an initialized MAPort is vendor specific (see

VariableNames property)

 readability and writability of model variables can be different on different XIL

simulators (see IsReadable and IsWritable methods)

 data type of model variables can be different on different XIL simulators (see

GetDataType method)

 the list of task names of an initialized MAPort is vendor specific (see TaskNames

property)

 the timing raster of the tasks provided by an initialized MAPort is vendor specific
and can be independent of the step-size of the simulation model.

The standard doesn’t define any timing constraints for the read and write accesses of
model variables. It is assumed that the read and write accesses are executed
synchronously.

Figure 48: Model AccessPort example

In order to stimulate model variables by signals, a SignalGenerator instance is

required that is also constructed by the MAPort object. Existing signal descriptions
can be loaded (see chapter Stimulating Model Variables for details). The usage of

the Capture and the SignalGenerator instances is described in chapter Data
Capturing and in chapter Stimulating Model Variables.

Before accessing a model variable, the MAPort instance can check if the variable is

readable or writeable (or both) and of which data type it is. Finally the variable is

accessed by the Read() and the Write() method of the MAPort object.

XIL User

(from Common)

:MAPort

get all available signals

and tasks

check signals

change the value of a

variable and verify it

getVariableNames() :A_UNICODE2STRING[]

IsReadable(variableName) :A_BOOLEAN

IsWritable(variableName) :A_BOOLEAN

GetDataType(variableName) :DataType

Read(variableName) :BaseValue

Write(variableName, value)

Read(variableName) :BaseValue

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 78

4.2.2.3 Stimulating Model Variables

How to stimulate model variables by signals is depicted in Figure 49 and Figure 50.

As described in the previous chapter, instances of class MAPort and of class

SignalGenerator need to be created beforehand. Using a

SignalGeneratorSTIReader object, existing signals are loaded as described in
chapter Document Handling. An example for such signals is presented in chapter
Signal Description.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 79

Figure 49: SignalGenerator example (part 1)

X
IL

U
s
e
r

:M
A

P
o

rt

:S
ig

n
a

lG
e
n

e
ra

to
r

:S
ig

n
a
lG

e
n
e

ra
to

r
S

T
IR

e
a
d

e
r

:S
ig

n
a
lD

e
s

c
ri

p
ti
o

n
S

e
t

:S
tr

in
g

N
a
m

e
d

C
o

ll
e
c
ti
o

n

S
ig

n
a

lG
e

n
e

ra
to

rF
a

c
to

ry

c
re

a
te

S
T

IR
e

a
d
e

r

c
r
e
a

te
s
ig

n
a

l
g
e

n
e

ra
to

r
o

b
je

c
t

g
e

t
a
tt

a
c
h
e

d
fi
le

n
a

m
e

o
f

S
ig

n
a

lG
e
n

e
ra

to
rS

T
IR

e
a

d
e

r

s
e

t
n

e
w

fi
le

n
a
m

e
to

S
ig

n
a

lG
e
n

e
ra

to
rS

T
IR

e
a

d
e

r

c
re

a
te

S
ig

n
a
lD

e
s
c
ri

p
ti
o

n
S

e
t
v
ia

L
o

a
d

g
e
t

c
re

a
te

d
S

ig
n

a
lD

e
s

c
ri
p

ti
o
n

S
e

t

c
o

n
n

e
ct

s
ig

n
a

l

d
e
s
c

ri
p
ti
o

n

fr
o

m
s
ti

fi
le

w
it
h

re
a
l

s
ig

n
a

ls
in

s
id

e

s
im

u
la

to
r

1
..
n

a
s
s
ig

n
m

e
n

ts

to
a

d
d

C
re

a
te

S
ig

n
a
lG

e
n

e
ra

to
r(

)
:S

ig
n

a
lG

e
n
e

ra
to

r

C
re

a
te

S
ig

n
a
lG

e
n
e

ra
to

rS
T

IR
e

a
d

e
r(

)
:

S
ig

n
a
lG

e
n
e

ra
to

rS
T

IR
e

a
d

e
r

g
e

tF
ile

N
a
m

e
()

:A
_

U
N

IC
O

D
E

2
S

T
R

IN
G

s
e
tF

ile
N

a
m

e
(f

ile
N

a
m

e
)

L
o

a
d

(r
e

a
d
e

r)

g
e

tS
ig

n
a
lD

e
s
c
ri

p
ti

o
n
S

e
t(

)
:S

ig
n
a

lD
e

s
c
ri

p
ti
o

n
S

e
t

A
d

d
(n

a
m

e
,

it
e
m

)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 80

After executing the Load() method, signal descriptions are referenced by the

SignalGenerator via a SignalDescriptionSet object. It may be that the file

contains already information that assigns the signals to model variables. In this case
the signal generator is configured after loading. Otherwise, these assignments are
specified by adding name-item pairs to the Assignments-Collection of the

SignalGenerator object. The name is one of the signal names, the item is the
model path of the variable to be stimulated.

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 81

Figure 50: SignalGenerator example (part 2)

(f
ro

m
C

o
m

m
o

n
)

:S
ig

n
a
lG

e
n
e

ra
to

r

:S
ig

n
a

lG
e

n
e

ra
to

rS
T

IW
ri

te
r

S
ig

n
a

lG
e
n

e
ra

to
rF

a
c
to

ry

lo
a

d
s
ig

n
a

l
g
e

n
e
ra

to
r

d
a

ta
to

h
a

rd
w

a
re

-
in

-t
h
e

-l
o

o
p

s
im

u
la

to
r

s
ta

rt
re

a
lt

im
e

e
x
e

c
u
ti
o

n
/g

e
n

e
ra

ti
o

n
o

f

s
ig

n
a
ls

g
e
t

e
la

p
s
e
d

ti
m

e

p
a
u

s
e

re
a

lt
im

e
e

x
e

c
u
ti
o

n

g
e
t

s
ta

te
(e

P
A

U
S

E
D

e
x
p
e

c
te

d
)

c
o

n
ti
n

u
e

re
a
lt
im

e
e

x
e
c
u

ti
o
n

s
to

p
re

a
lt
im

e
e

x
e
c
u

ti
o
n

o
f

s
ig

n
a

ls

c
re

a
te

S
T

IW
ri

te
r

g
e

t
a

tt
a

c
h
e

d
fi
le

n
a

m
e

o
f

S
ig

n
a
lG

e
n
e

ra
to

rS
T

IW
ri

te
r

s
e

t
n

e
w

fi
le

n
a
m

e
to

S
ig

n
a

lG
e
n

e
ra

to
rS

T
IW

ri
te

r

s
a

v
e

s
ig

n
a
l
d

e
s
c

ri
ti
o
n

s
e
t

a
n

d
a

s
s
ig

n
m

e
n
ts

s
e
tA

s
s
ig

n
m

e
n
ts

(a
s

s
ig

n
m

e
n

ts
)

L
o

a
d

T
o
T
a

rg
e
t(

)

S
ta

rt
()

g
e

tE
la

p
s
e
d

T
im

e
()

:A
_

F
L

O
A

T
6

4

P
a

u
s
e

()

g
e

tS
ta

te
()

:

S
ig

n
a
lG

e
n
e

ra
to

rS
ta

te

S
ta

rt
()

S
to

p
()

C
re

a
te

S
ig

n
a
lG

e
n
e

ra
to

rS
T

IW
ri

te
r(

)
:

S
ig

n
a
lG

e
n
e

ra
to

rS
T

IR
e

a
d

e
r

g
e

tF
il

e
N

a
m

e
()

:A
_
U

N
IC

O
D

E
2

S
T

R
IN

G

s
e

tF
ile

N
a

m
e
(f

il
e

N
a
m

e
)

S
a

v
e
(w

ri
te

r)

Testbench

ASAM AE XIL Simulation Model Access Version 1.0.0 82

After setting these assignments, the stimulus is configured. The next step is to load
the stimulus down to the target which is usually the XIL simulator. Then, the stimulus
can be started, paused, and stopped by calling the corresponding methods. Further,

the user can ask for the current state of the signal generator using the State()
property. Finally, the signal generator object can be saved including the new

assignments, using a SignalGeneratorSTIWriter as described in Stimulating

Model Variables.

Symbols and Abbreviated Terms

ASAM AE XIL Simulation Model Access Version 1.0.0 83

5 Symbols and Abbreviated Terms

(D)COM (Distributed) Component Object Model

AE Automotive Electronics

API Application Programming Interface

ASAM Association for Standardisation of Automation and Measuring
Systems

CAN Controller Area Network

DLL Dynamic Link Library

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read Only Memory

EES Electrical Error Simulation

FIU Failure Injection Unit

FMI Functional Mock-up Interface

GES General Expression syntax

GPIB General Purpose Interface Bus

HIL Hardware In the Loop

LIN Local Interconnect Network

PC Personal Computer

RS232 Recommended Standard 232 (standard for serial binary data
signals)

sti stimulus description file (XML format)

stz stimulus description file (zip archive)

SUT System Under Test

TA Test Automation

TCP/IP Transmission Control Protocol/Internet Protocol

UML2 Unified Modeling Language Version 2

XIL Generic Simulator Interface

XML Extensible Markup Language

XSD XSD XML Schema Definition

Bibliography

ASAM AE XIL Simulation Model Access Version 1.0.0 84

6 Bibliography

[1] ASAM e.V.: ASAM Data Types; 2005

[2] ASAM e.V.: ASAM General Expression; 2011

[3] ASAM e.V.: ASAM Measurement Data Format; 2012

[4] The MathWorks Inc.: MAT-File Format; 2013;
http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf

[5] ASAM e.V.: C# API Technology Reference Mapping Rules; 2013;

[6] ASAM e.V.: Python API Technology Reference Mapping Rules; 2013;

[7] ASAM e.V.: Modeling Guidelines

[8] ASAM e.V.: ASAM XIL; 2013

http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf

Appendix A. Syntax of Watcher Conditions

ASAM AE XIL Simulation Model Access Version 1.0.0 85

Appendix A. SYNTAX OF WATCHER CONDITIONS

In the ASAM XIL API the General Expression Syntax is used for defining watcher
conditions. Not all possible functions and operators of the ASAM General Expression
[2] are required. This document defines the subset of ASAM Expressions supported
by the XIL API V2.0.0.

Table 21 Operators and Functions supported by XILAPI V 2.0.0

Semantic Syntax and Arguments XILAPI
V2.0.0

Sequential evaluation of several trigger
conditions: when the left hand side condition
evaluates to true, the evaluation of the right
hand side condition starts (and continues even if
the left hand side condition does not remain
true)

expr1 &> expr2

Conditional operator expr1 ? expr2 : expr3 -

Logical or expr1 || expr2

Logical xor expr1 ^^ expr2

Logical and expr1 && expr2

Bitwise or (inclusive or) expr1 | expr2 -

Bitwise xor (exclusice or) expr1 ^ expr2 -

Bitwise and expr1 & expr2 -

Equality; implementation of comparison of
floating-point numbers is implementation
specific

expr1 == expr2

Non-equality expr1 != expr2

Less than expr1 < expr2

Greater than expr1 > expr2

Less or equal expr1 <= expr2

Greater or equal expr1 >= expr2

Bitwise shift left, 0 is added at LSB expr1 << expr2 -

Bitwise shift right, 0 is added at the MSB if MSB
was 0 else 1 is added

expr1 >> expr2 -

Addition expr1 + expr2

Subtraction expr1 – expr2

Multiplication expr1 * expr2

Division expr1 / expr2

Modulo operation expr1 % expr2 -

Negation - expr

Appendix A. Syntax of Watcher Conditions

ASAM AE XIL Simulation Model Access Version 1.0.0 86

Semantic Syntax and Arguments XILAPI
V2.0.0

Positive sign; has no effect, just to show a
positive number like in C

+ expr

Logical not ! expr

Bitwise not ~ expr -

Postfix operator . identifier.identifier -

Array element access identifier[decimal-
constant]

-

Sine (argument in radians) sin(expr)

Cosine (argument in radians) cos(expr)

Tangent (argument in radians) tan(expr) -

Arc sine (return value in radians) asin(expr) -

Arc cosine (return value in radians) acos(expr) -

Arc tangent (return value in radians) atan(expr) -

Hyperbolic sine sinh(expr) -

Hyperbolic cosine cosh(expr) -

Hyperbolic tangent tanh(expr) -

Natural logarithm (base e) log(expr) -

Common logarithm (base 10) log10(expr) -

Exponential function, returns e Number exp(expr) -

Power (pow(a,b) ab) pow(expr1, expr2)

Power operator (a**b) ab) expr ** expr

Square root sqrt(expr) -

Absolute value abs(expr)

Sign (returns -1 for negative number, 0 if zero,
+1 for positive number)

sgn(expr) -

Returns the nearest integer of the given number round(expr) -

Returns smallest integer that is greater than or
equal to the given number

ceil(expr) -

Returns largest integer that is less than or equal
to the given number

floor(expr) -

Minimum min(expr1, expr2)

Maximum max(expr1, expr2)

Detection of positive edge: returns true when
the value of the signal defined by the variable
changes from a value lower than threshold to a
value greater or equal than threshold

posedge(expr1,
expr2Threshold)

Detection of negative edge: returns true when
the value of the signal defined by the variable
changes from a value higher than threshold to a
value lesser or equal than threshold

negedge(expr1,
expr2Threshold)

Appendix A. Syntax of Watcher Conditions

ASAM AE XIL Simulation Model Access Version 1.0.0 87

Semantic Syntax and Arguments XILAPI
V2.0.0

Detection of positive edge: returns true when
the value of the signal defined by the variable
changes from a value lower than threshold to a
value greater than threshold

strictposedge(expr1,
expr2Threshold)

-

Detection of negative edge: returns true when
the value of the signal defined by the variable
changes from a value higher than threshold to a
value lesser than threshold

strictnegedge(expr1,
expr2Threshold)

-

Detection of value change; change is detected
when difference between current number and its
direct successor (number in the last evaluation
step) is greater or equal than given delta

changed(expr1,
expr2Delta)

Detection of hardware trigger hwtrigger() -

Detection of manual trigger mantrigger() -

A.1. OTHER RESTRICTIONS

 Bit operations like shift are not defined.

 The first parameter of the functions posedge, negedge, and changed must be only
variables, not expressions.

 The number of significant initial characters of an identifier is 32.

A.2. SYNTAX OVERVIEW

The following syntax defines the subset of the ASAM GES that can be used in XIL
API watcher conditions:

XIL-API-Watcher-Condition:
 and-then-expression

and-then-expression:
 conditional-expression
 and-then-expression &> conditional-expression

conditional-expression: // GES
conditional operator omitted here
 logical-OR-expression

logical-OR-expression:
 logical-XOR-expression
 logical-OR-expression || logical-XOR-expression

logical-XOR-expression:
 logical-AND-expression
 logical-XOR-expression ^^ logical-AND-expression

logical-AND-expression:

Appendix A. Syntax of Watcher Conditions

ASAM AE XIL Simulation Model Access Version 1.0.0 88

 inclusive-OR-expression
 logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression: // GES bitwise or (inclusive or)
omitted here
 exclusive-OR-expression

exclusive-OR-expression: // GES bitwise xor (exclusice or) omitted here
 AND-expression

AND-expression: // GES bitwise and omitted here
 equality-expression

equality-expression:
 relational-expression
 equality-expression == relational-expression
 equality-expression != relational-expression

relational-expression:
 shift-expression
 relational-expression < shift-expression
 relational-expression > shift-expression
 relational-expression <= shift-expression
 relational-expression >= shift-expression

shift-expression: // GES shift operators omitted here
 additive-expression

additive-expression:
 multiplicative-expression
 additive-expression + multiplicative-expression
 additive-expression - multiplicative-expression

multiplicative-expression: // GES modulo operation omitted here
 power-expression
 multiplicative-expression * power-expression
 multiplicative-expression / power-expression

power-expression:
 unary-expression
 power-expression ** unary-expression

unary-expression:
 postfix-expression
 function-call-expression
 unary-operator unary-expression

unary-operator: one of // GES bitwise not operator omitted here
 + - !

Appendix A. Syntax of Watcher Conditions

ASAM AE XIL Simulation Model Access Version 1.0.0 89

postfix-expression: // GES postfix operators . and []
omitted here
 primary-expression

function-call-expression: // GES nullary-function-call-expression
omitted here
 unary-function-call-expression
 binary-function-call-expression

unary-function-call-expression:
 unary-built-in-function (conditional-expression)

binary-function-call-expression:
 binary-built-in-function (conditional-expression , conditional-expression)

unary-built-in-function: one of // some GES built-in functions
omitted here
 sin cos abs

binary-built-in-function: one of // some GES built-in functions omitted here
 pow min max
 posedge negedge
 changed

primary-expression:
 identifier
 constant
 (conditional-expression)

Appendix B. Key Value Pairs

ASAM AE XIL Simulation Model Access Version 1.0.0 90

Appendix B. KEY VALUE PAIRS

Inside the Meta Data Key Value Pairs can be used. An overview about currently
defined Keys / Value pairs is shown in Table 22.

Table 22 Overview about reserved Key Value Pairs

Key Usage area Value Description

StartTriggerTimeOut Meta data of capture
results

TRUE
FALSE

activation by Time Out
activation by Trigger Condition

StopTriggerTimeOut Meta data of capture
results

TRUE
FALSE

activation by Time Out
activation by Trigger Condition

Figure Directory

ASAM AE XIL Simulation Model Access Version 1.0.0 91

Figure Directory

Figure 1: Principle of Hardware-in-the-Loop Simulation 8
Figure 2: XIL Testbench API with direct port access 11
Figure 3: Implementation Manifest files contain a list of elements referring to C#

or Python classes that implement the Testbench interface 13
Figure 4: NetTestbenchImplementation element of the Implementation Manifest 14
Figure 5: PyTestbenchImplementation element of the Implementation Manifest 15
Figure 6: TestbenchFactory class 16
Figure 7: General Value classes 18
Figure 8: Data types of value elements managed by Value classes ScalarValue

and VectorValue 19
Figure 9: Application oriented Value classes 20
Figure 10: Attributes class 20
Figure 11: DocumentHandling in XIL 21
Figure 12: SignalDescriptions and SignalGenerator 22
Figure 13: Modulate Signal Parameter by further Signals 22
Figure 14: SignalDescriptions and SignalGenerator 23
Figure 15: SignalDescriptions and SignalGenerator (data transformation) 24
Figure 16: SignalDescription relations 25
Figure 17: SignalDescription Reader and Writer 26
Figure 18: Symbol 28
Figure 19: ConstSegment 29
Figure 20: RampSegment 30
Figure 21: IdleSegment 32
Figure 22: NoiseSegment 34
Figure 23: RampSlopeSegment 35
Figure 24: SineSegment 37
Figure 25: SawSegment 39
Figure 26: PulseSegment 41
Figure 27: ExpSegment 43
Figure 28: Create Segment Signal Description Example 51
Figure 29: Create OperationSignal 52
Figure 30: Create a wobbling signal 53
Figure 31: Create SignalDescriptionSet 54
Figure 32: Load a SignalDescriptionSet 54
Figure 33: Save SignalDescriptionSet 55
Figure 34: Testbench Watcher 56
Figure 35: The class Capture 58
Figure 36: Start and Stop Trigger used 62
Figure 37: Capturing state diagram 63
Figure 38 Capture results 64
Figure 39: Document Handling 65
Figure 40: Usage of capturing with Watcher (Part 1) 67
Figure 41: Usage of capturing with Watcher (Part 2) 68
Figure 42: Model Access Port 69
Figure 43: Signal Generator 70
Figure 44: Document Handling 70
Figure 45: MAPort state diagram 71
Figure 46: Signal generator state diagram 73
Figure 47: Process of MAPort creation and configuration 76
Figure 48: Model AccessPort example 77
Figure 49: SignalGenerator example (part 1) 79

Figure Directory

ASAM AE XIL Simulation Model Access Version 1.0.0 92

Figure 50: SignalGenerator example (part 2) 81

Table Directory

ASAM AE XIL Simulation Model Access Version 1.0.0 93

Table Directory

Table 1 Version number 10
Table 2 Storage locations for Implementation Manifest files (environment

variables are enclosed by % signs) 16
Table 3 Packages of Common part 17
Table 4 Parameters ConstSegment 29
Table 5 Parameter RampSegment 31
Table 6 Parameter IdleSegment 32
Table 7 Parameter NoiseSegment 34
Table 8 Parameter RampSlopeSegment 36
Table 9 Parameter SineSegment 38
Table 10 Parameter SawSegment 40
Table 11 Parameter PulseSegment 42
Table 12 Parameter ExpSegment 44
Table 13 Parameter SignalValueSegment 45
Table 14 Parameter DataFileSegment 47
Table 15 Parameter LoopSegment 48
Table 16 Parameter OperationSegment 49
Table 17 Configuration Properties and Methods of Capture 59
Table 18 State of the MAPort 71
Table 19 MAPort states 72
Table 20 SignalGenerator states 74
Table 21 Operators and Functions supported by XILAPI V 2.0.0 85
Table 22 Overview about reserved Key Value Pairs 90

E-mail: support@asam.net

Web: www.asam.net

© by ASAM e.V., 2014

mailto:support@asam.net
http://www.asam.net/

	ASAM AE XIL-MA
	Foreword
	1 Introduction
	1.1 OVERVIEW
	1.2 MOTIVATION
	1.3 WHAT IS HARDWARE IN THE LOOP SIMULATION
	1.4 TECHNICAL APPROACH
	1.5 TECHNOLOGY INDEPENDENCE

	2 Relations to Other Standards
	2.1 BACKWARD COMPATIBILITY TO EARLIER RELEASES
	2.2 REFERENCES TO OTHER STANDARDS
	2.3 VERSIONING

	3 General Concepts
	3.1 XIL TEST SYSTEM ARCHITECTURE
	3.2 OVERVIEW TESTBENCH
	3.3 ASAM DATA TYPES
	3.4 INSTANCE CREATION
	3.4.1 IMPLEMENTATION MANIFEST FILE
	3.4.2 TESTBENCH FACTORY

	4 Testbench
	4.1 COMMON FUNCTIONALITIES
	4.1.1 VALUECONTAINER
	4.1.2 DOCUMENT HANDLING
	4.1.3 SIGNAL DESCRIPTIONS
	4.1.4 WATCHER
	4.1.5 DATA CAPTURING

	4.2 MODEL ACCESS PORT
	4.2.1 USER CONCEPT
	4.2.2 USAGE OF THIS PORT

	5 Symbols and Abbreviated Terms
	6 Bibliography
	Appendix A. SYNTAX OF WATCHER CONDITIONS
	A.1. OTHER RESTRICTIONS
	A.2. SYNTAX OVERVIEW

	Appendix B. KEY VALUE PAIRS

