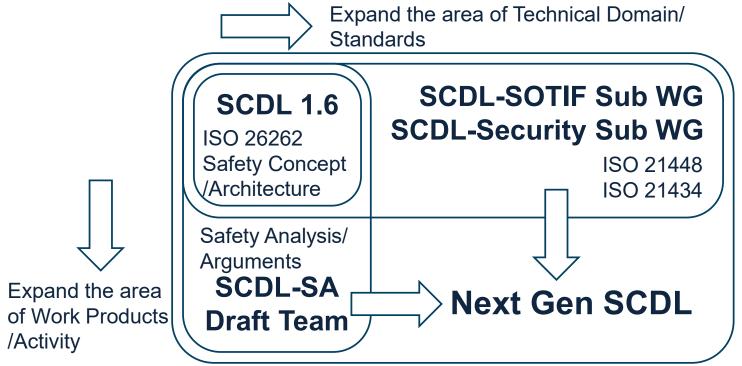


Concept project proposal for SCDL Next Gen. SCDL-SA (Safety Analysis/Arguments)

Nobuaki Tanaka / OTSL Inc. SCN-SG SCDL-SA Draft Team

Sep. 19th, 2023

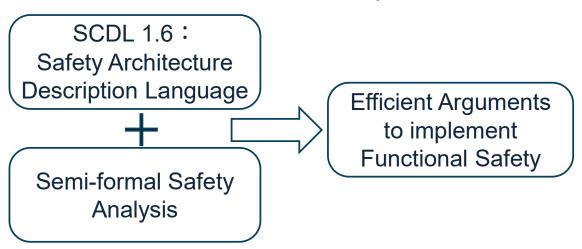
Table of Contents



- 1.What is SCDL-SA?
 - SCDL-SA Draft Team : Background, Objective, Members
 - Activities
- 2.Requirements and Discussion items
 - 2.1 Needs and HLR (High Level Requirements)
 - 2.2 Changes : SCDL1.6→SCDL Next Gen.
 - 2.3 Discussion on Representation and Metamodel
- 3.Motivation for Standardization
- 4.Use Cases

1. What is SCDL-SA?

- SCDL-SA covers Safety Analysis/Safety Arguments
 - 2022/Apr. Started investigation on Semi-formal Safety Analysis with SCDL.
 - Later, expanded the discussion also on Safety Arguments
 - Utilize "Safety Concept + Safety Analysis" as Safety Arguments



Strong needs from industry: Semi-formal notation standard in areas other than Safety Concept / Architecture for better efficiency.

SCDL-SA Draft Team in SCN-SG

- Established in April/2022
- Objectives :
 - Investigate the Semi-formal notation not covered by SCDL1.6
 - Safety Analysis
 - Safety Requirements
 - Safety Arguments

Members :

Toshiki Iwanaga (Change Vision)

Yoshiyuki Sasaki (Marelli)

Kenji Taguchi (UL)

Hidenori Miyamoto (Kouzou Keikaku Eng. Inc.)

Kenji Ohnishi (GAIO technology)

Kodai Seki (Toyota)

Nobuaki Tanaka (OTSL)

Chair: Shuhei Yamashita (DNV)

Past/Future Activities of SCDL-SA team

Wide range of the domain

Safety Analysis/Safety Arguments

Information from various experiments/discussion

Safety Cocept/Analysis in developments

Specification Description tool development

Arguments/Requirement Engineering

Ideas for Semi-formal notation of Work Products

ASAM project Proposal

Presentation in

Conferences / Events

Future Plans

Case study: Semi-

formal description of

SRVA work products

Experience in SCDL 1.6 standardization

Metamodel and Use case for Safety Analysis

Discussion on Requirements for SCDL-SA

2. Requirements and Discussions

2.1 Needs and HLR(High Level Requirements)

	Needs from investigation/discussion			
1	SCDL-SA shall be able to represent the relationship between failures and the Safety Mechanisms in terms of Safety Goal Violations (SGV).			
2	SCDL-SA shall be able to build the analysis result of the system from the combination of the analysis results for components.			
3	SCDL-SA shall be able to express the Independence btw. Safety Requirements efficiently.			
4	SCDL-SA shall be able to align the result of top-down analysis and bottom-up analysis when the requirements are refined.			
5	This activity shall provide the pattern(s) of the FTA result which separates the failures of intended functionality and the failures of Safety Mechanism.			

HLR for SCDL-SA

New Requirements

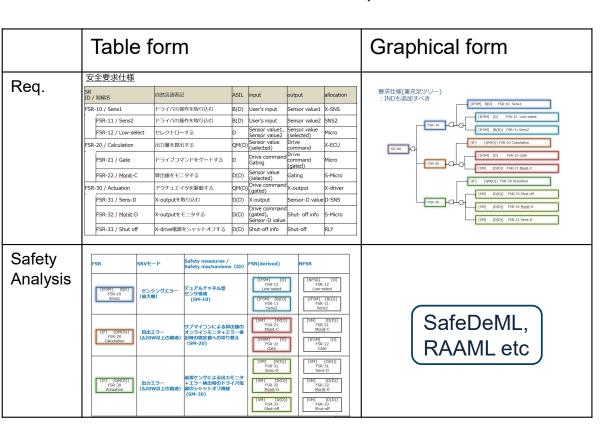
- 1. Representation of the relationship btw. failures and Safety Mechanism
- 2. Layering Safety Analysis
- 3. Inductive/Deductive Analysis

Improvement from SCDL1.6

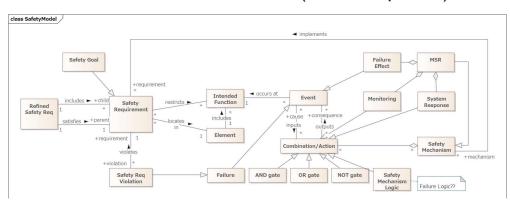
 Efficient expression for the Independence btw. Safety Requirements

2.2 Changes : SCDL1.6→SCDL Next gen(proposal)

SCDL 1.6


- Defined syntax for Safety Concept
- Assumed the use of Safety Req. table
- Left the selection of Safety Analysis notation
- →SCDL Next Gen will provide
- Safety Concept diagram
- Safety Req. specification
- Safety Req. Violation Analysis

SCDL 1.6 Work	Item	SCDL 1.7 Work Products		
Products		Safety Concept	Safety Requirement	Safety Analysis
Safety Concept	Structure of Safety Req.	✓		
Diagram.	Structure of elements	✓		
	Allocation of Safety Req.	✓		
	ASIL	✓		
	Requirement Group		✓	✓
	Pairing btw groups		✓	✓
	Independence Req.	(✔)	✓	✓
	FFI		✓	√
	FFI Req.	(✔)	✓	√
	Interface	(✔)	✓	
(Safety	Req. ID, Label		✓	√
Requirements)	Natural Lang. Express.		✓	
	Type (IF, SM, etc.)		✓	(✓)
	Input, output		✓	
	ASIL		✓	
	Status		✓	
	Traceability		✓	
(Safety Analysis)	Safety Req. ID			√
	Safety Req.			√
	Туре			✓
	Safety Req. Violation Mode			√
	Effect of Safety Req. Violation			√
	Safety Measure/Mechanism			√


Discussion on Representation and Metamodel

Discussion based on Representation

Discussion based on Metamodel

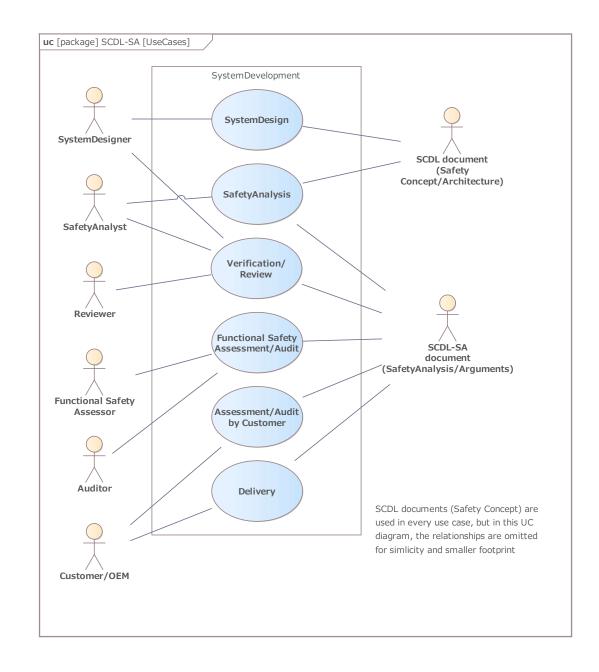
Metamodel for SCDL-SA (draft/simplified)

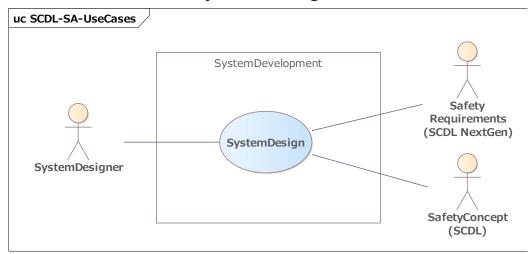
The team is conducting the discussion based on both of Representation and Metamodel for deeper understanding/investigation.

Motivation for standardization

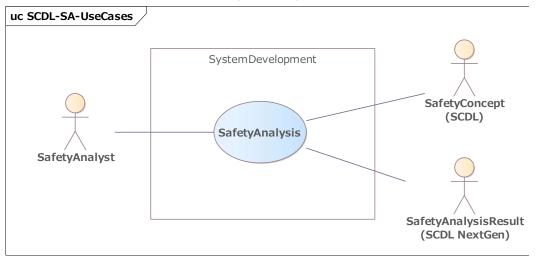
Technical Background :

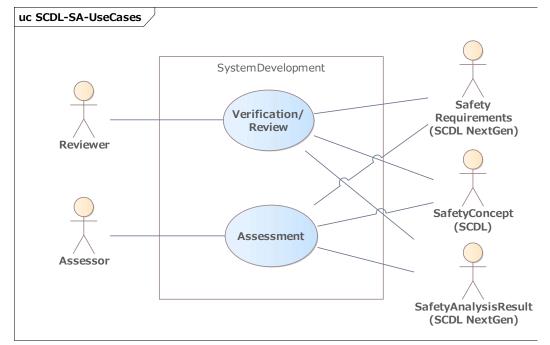
- Currently, Model-Based Safety Analysis/Argument is an active technical field in academic and industrial organizations.
- Strong needs from the industry :
 - Efficient implementation of Safety Analysis/Assurance with Semi-formal work products.
- Needs for standardization :
 - Standard notation and interoperability between different tools /different organizations are necessary for the acceptance of the technology in the large scale development such as automobile, aviation, etc.


Use cases


Communications between :

- Verification/Review btw Developers and Safety Analysts (in a development team)
 - Safety Analysts make Safety Analysis results in SCDL-SA format and provide them to Developers to share the analysis result.
- Developer/Safety Analyst and Assessor/Auditor (between divisions)
 - Developers and Safety Analysts build and agree with Safety Analysis result and Safety Arguments in SCDL-SA format and provide them to Assessor and Auditor for assessment and audit.
 - Assessor and Auditor can easily understand the result because of the common understanding of the representation of the work products.
- Supplier and Customer (between companies)
 - Supplier provides the Safety Analysis results and Assurance results in SCDL-SA form.
 - Both company can easily understand the results because of the common understanding of the format.


Use Case Diagrams


System Design

Safety Analysis

Review/Assessment

Thank you for your attention

Question?

