ASAM OpenX Standards for Offroad Applications

Daniel Carruth, PhD Mississippi State University 2023-09-19 Santa Clara, CA

Association for Standardization of Automation and Measuring Systems

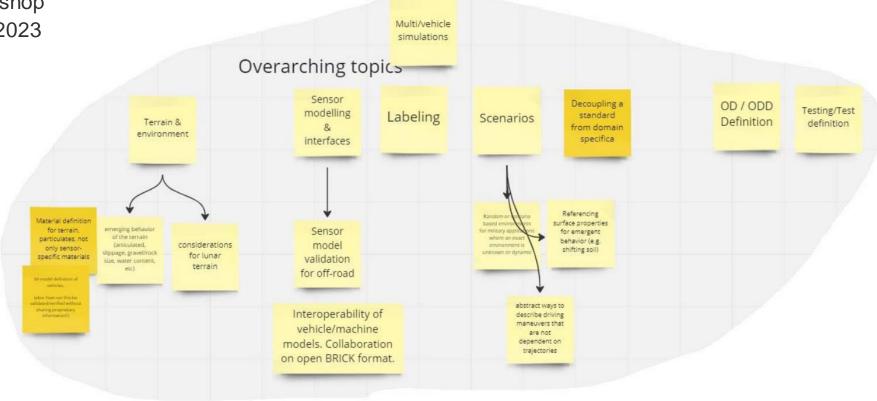
Agenda

- Motivation for the Activity
- Operating in the Offroad Environment
 - Challenges
 - Existing standards
- ASAM Offroad Applications Proposal

Motivation for the Activity

Offroad Applications

- Landfill
- Construction
- Agriculture
- Mining
- Military
- Recreational
- Other
 - Forestry
 - Space
 - Warehouses
 - Harbors
 - Maritime


- Workshop Poll
 - 3%
 - 17%
 - 34%
 - 20%
 - 6%
 - 6%
 - 10%

Offroad Applications Ideation Group

- ASAM OpenX standards for offroad applications
- Ideation Workshop
- February 23, 2023

Offroad Challenges

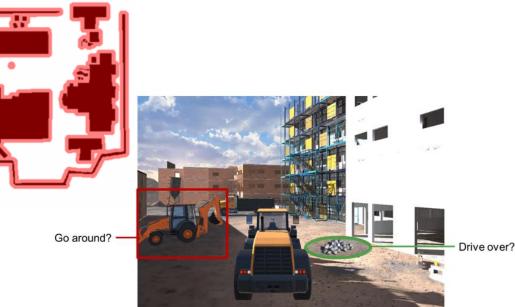
Workshop

- Poll
 - Complex 3D terrain
 - Representation of the subsurface
 - Soil strength, density, temperature, water content
 - Effects on mobility
- Sensor modeling and surface materials (including link between appearance and physical characteristics)
 - Vehicle-terrain interaction and material dynamics
 - Mud and water spray
 - Mud and snow deformation
 - Accumulation of material on vehicles
- **3** Object representation
 - Vegetation and other natural obstacles
 - Meshes, materials, physics
- Weather conditions
- Occlusion of sensors
 - Mud, snow, dirt in the air and on camera lens

Exercise the Standards

Offroad Applications Concept Project

Hypothesis: Current standards do not adequately support requirements for offroad applications



Operations and Activities

Categorizing activities

Vehicle Movement

- Navigation
- Vehicle-terrain interaction
- Interaction with objects

Excavator Simulation Model - https://www.mathworks.com/matlabcentral/fileexchange/119268-excavator-design-with-simscape

💐 🕢 🔿 🖄 💢 🗑 🗇 🗇 🗇 🗇 🗇 🗇 🗐 🐨 View convertion Zup (07.Top) 💦 💐 🗣 🕫 🕂 🖓 4 🗐 🖉

Manipulating the Environment

Excavating a pit

Manipulating material

Loading a vehicle

MathWorks Webinar on "Design and Simulating Autonomy for Construction Vehicles", https://www.mathworks.com/videos/design-and-simulating-autonomy-for-construction-vehicles-1679066541903.html

Kaibab National Forest, 2019,[Grassland Restoration 2019(4886791186).jpg][Photograph], https://commons.wikimedia.org/wiki/File/Grassland Restoration 2019 (48867911186).jpg], CC-BY-SA-4.0.

Use Cases Driven by Personas

• What kind of simulations do users want to build for offroad applications?

Vehicle Developer

- Develop and test mechanical, electrical, hydraulic, and electromechanical systems for offroad scenarios
- Build physics-based vehicle models to test vehicle behavior in 3D simulations

Autonomy Developer

- Create algorithms, software and supporting documentation for perception, planning and control of the vehicles and their support tools
- Collect sensor and mobility data for training AI/ML models
- Work with control engineers to investigate, test, and select software toolsets or hardware components and peripherals

Test Engineer

 Develop and evaluate detailed offroad test scenarios for both component and system level testing and validation.

System Integration Engineer

- Create scenarios to help understand the requirements for systems.
- Create schematic representations of mechanical, electrical, hydraulic, and electromechanical systems
- Work with other disciplines to create the specifications that outline the control system logic necessary for haul truck functions

Site Manager

- Manage and assess the application of vehicle systems on-site.
- Work with the environment, health, and safety teams and security teams to conduct regular risk assessments
- Maintain a risk register and develop and implement risk mitigation plans

Technical Requirements Driven by Use Cases

Vehicle Developer

- Represent vehicle components relevant to VTI/mobility
- Represent
 driveline/powertrain for the
 vehicle
- Modelling of heavy machinery on soft terrain (deep tracks)
- Represent vehicle loads including specification of type and volume of material being transported and estimating effects caused by the load including stability, traction, deformation of road surfaces, and maneuverability
- Evaluate or optimize efficiency of vehicle systems in the operating environment

Autonomy Developer

- Model vehicle perception and mobility and dynamics as it traverses an offroad environment
- Model GPS sensor data accounting for effects of vehicle movement, terrain, and vegetation including loss of signal, multipath, etc.
- Model common sensors

 (e.g., LiDAR, EO camera, IR, radar, GPR, etc.) accounting for effects of vehicle movement, terrain, and vegetation including occlusion, material attribution, etc.

Test Engineer

- Evaluate or optimize efficiency of vehicle systems in the operating environment
- Represent effects of adverse conditions (dust, standing water, mud, etc.) on terrain properties and on sensors (e.g., occlusions from dust clouds, water spray, water or mud on lenses, etc.)
- Estimate effects of vegetation on sensors and vehicle mobility
- Extract sensing and mobility data for learning how to traverse terrain

System Integration Engineer

- Generate prior information to the autonomy stack (e.g., simulate extraction of maps, etc. from previous drives, UAS, or other sources)
- Represent vehicle loads including specification of type and volume of material being transported and estimating effects caused by the load including stability, traction, deformation of road surfaces, and maneuverability
- Share and reuse off-road scenarios in a common format for shared understanding

Site Manager

- Incorporate fuel depot/charging stations (capacity, charge/refuel rate)
- Collecting performance data for benchmarking systems

Scenarios

Moving from Point A to Point B

- 1. Following a Path
- 2. Finding a Path
- 3. Carrying a Load
- 4. Using Sensors to Respond to the Environment

 $\mathbf{1}$

2

3

2

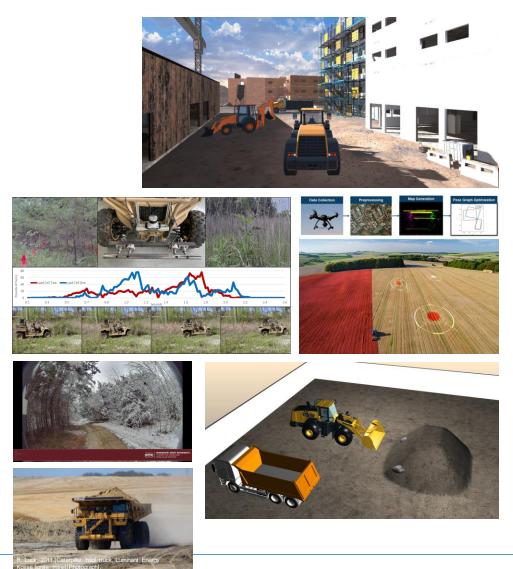
5

6

6

7

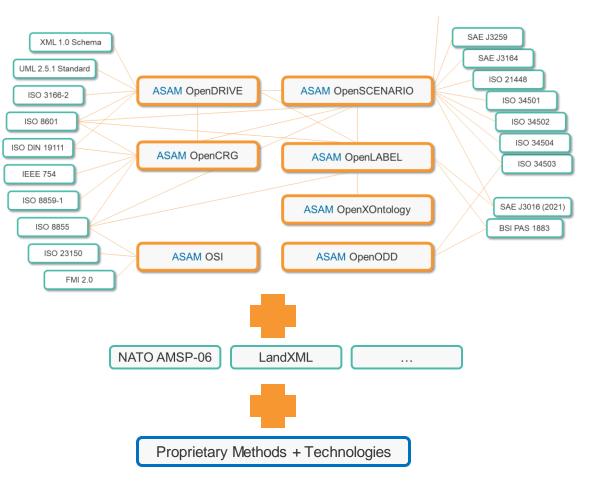
8


5. Navigating without GPS

Vehicle Interaction

- 6. Following a Lead Vehicle
- 7. Dealing with Environmental Effects
- 8. Interacting with Traffic
- 9. Incorporating Drones / Ground-Air Vehicle Teaming (5)

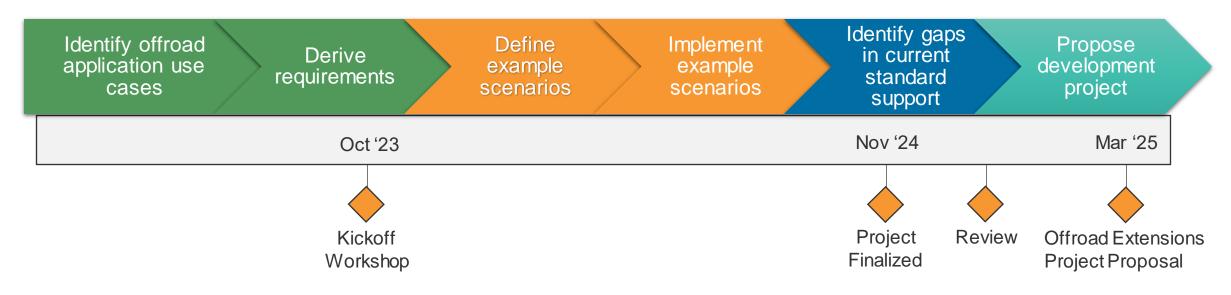
Load and Haul


- 10. Loading a Hauler Hauler
- 11. Loading a Hauler Excavator
- 12. Evaluating fuel efficiency

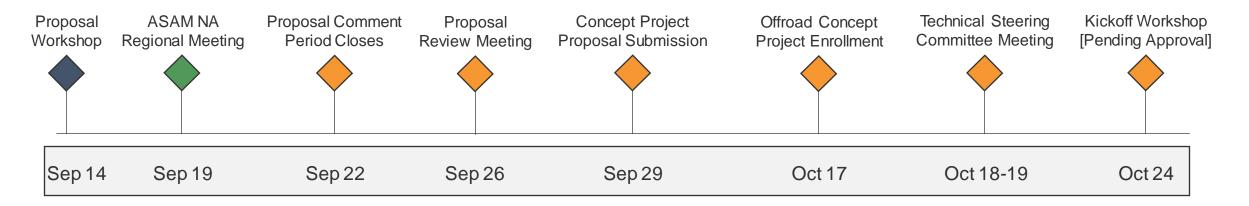
Standards

- ASAM OpenX Simulation Standards
 - OpenCRG
 - OpenDRIVE
 - OpenSCENARIO
 - OSI
 - OpenODD
 - OpenLABEL
 - OpenMATERIAL
 - OpenTEST
- External related standards Terrain, drivable area, and materials
 - Landxml 1.2 (infra model 4.0.4)
 - ISO 15143-4
 - ISO 7334
 - EMESRT PR5A
 - ISO 21815
 - ISO 6165
 - NATO AMSP-06
- Proprietary solutions
 - e.g., Algoryx agxTerrain implementation

Concept Project Deliverables


- Example scenario implementation and documentation.
 - Documentation of requirements driven by offroad application
 - Evaluation of current ability to meet requirements with current standards
 - Able to meet requirement with current standard
 - Unable to meet requirement with current standards
 - Unable to demonstrate proprietary capability
 - When met, document the standard, method, and grade level of support
 - When not met, identify potential standard that could support, possible definition for that support
 - Estimate overall level of support for offroad applications
- Create a concept document for extensions and/or standards for supporting offroad applications.
- Offroad extension project proposal.

Offroad Applications Concept Project


Timeline

• Pending Approval of the Project

Concept Project Proposal Timeline

Next Steps:

The ASAM Offroad Concept Discussion has concluded following the proposal workshop and will be replaced with the new Concept Project **ASAM** OpenX standards in Offroad Applications upon approval by the Technical Steering Committee next month. This will be followed by the Kick-off workshop which will be announced at a later date.

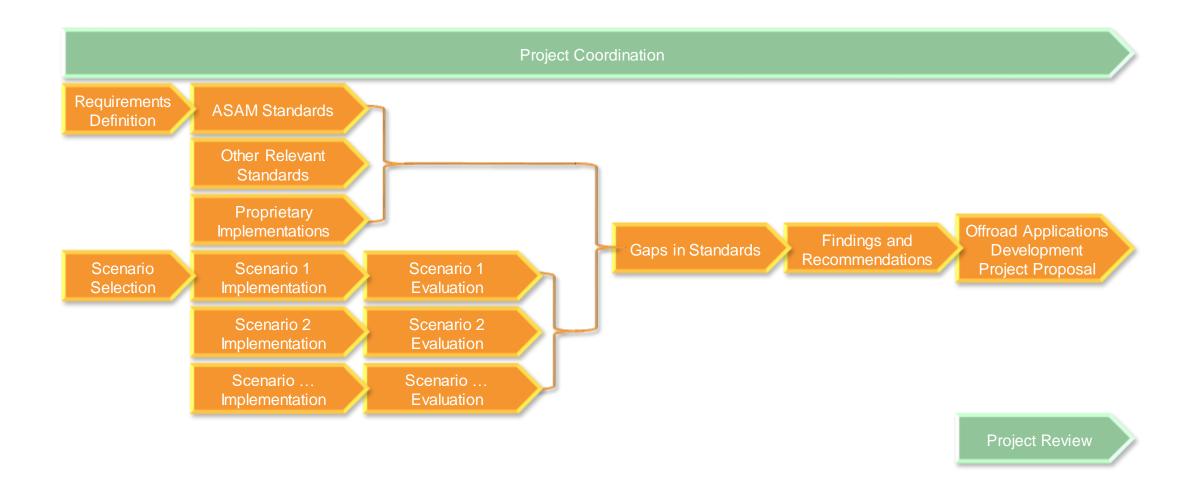
Draft proposal document is now available. To join the ideation group and/or access the proposal document please contact: Matthäus Lang Technology Manager ASAM e.V. matthaeus.lang@asam.net

Call for Participation

- Currently enrolling participants for the concept project
 - Enrollment open soon on the ASAM website
 - Open through Oct 17
- Who should participate?
 - Interest in offroad ground vehicle application areas
 - Expertise in application domains
 - Expertise across OpenX standards and other related standards
 - Developers and users of M&S tools
 - Ground vehicle developers

To join, contact:

Matthäus Lang Technology Manager **ASAM e.V.** Altlaufstr. 40 85635 Höhenkirchen / Germany Phone: +49810270139083 Mobile: +491709213579 matthaeus.lang@asam.net


www.asam.net

Daniel Carruth Associate Director Center for Advanced Vehicular Systems Mississippi State University dwc2@cavs.msstate.edu

Project Activities

Offroad Applications Concept Project

Proposed Approach – Exercise the Standards

Hypothesis: Current standards do not adequately support requirements for offroad applications

Identify offroad application use cases requirements	Define example scenarios	Implement example scenarios	Identify gaps in current standard support	Propose development project	
--	--------------------------------	-----------------------------------	--	-----------------------------------	--

