
Release Presentation

ASAM MCD-2 CERP/ P2014-02 / BS / V1.0
Calibration Expert System Rule and Product Model Format

Release Date: 2016/ 02 / 22

Motivation

2

Check correctness of calibration data

Automate checks

Check characteristics* or hardware properties versus:

∙ Fix values

∙ Other characteristics

∙ A2L properties

∙ Hardware properties

Exchangeable rule set:

∙ Applied in different tools from different vendors

∙ Applied at different points in calibration lifecycle

Later: Generate parameter values via rules

* Characteristics = calibration parameters = labels = tuning variables = software constants

Marketing

3

Improve quality of calibration data

Early quality feedback in calibration lifecycle

Improved communication between software development, control loop

design, calibration, test, quality assurance

Automate checks

Automatic and functional calibration in later phases

Features of Standard

4

Programming language OTX used as base

Shared measurement and calibration extensions for OTX:

∙ Read or write characteristic values

∙ Read database (A2L) information

∙ Compare characteristic values (ECU / physical representation, consider quantization,

interpolate maps)

∙ Low level functions with access to all properties (expert view)

∙ Comfort functions with limited but simplified access to most important properties

(simple view)

CERP private extensions for OTX:

∙ Access to feature (hardware properties)

∙ Rule procedure to express checks

What are CERP Rules?

5

Rules

Rules are small programs written in OTX

Rules read calibration artifacts and calculate whether they are correct

OTX programming language

OTX is a Turing-complete programming language

OTX programs are exchanged in standardized XML notation

OTX extension address calibration specific functionality

CERP extensions

Core element of ASAM standard

Extensions to read and write calibration artifacts

6

OTX

MCD-2
CERP Rule

Language
MC Extensions

Extends

Based on Consist

of

Is

External

reference

Subject of

standard

Legend

Written in

Rule script
CERP Feature

Schema

Defined by

Feature List

Properties defined in ASAM

MCD-2 MC

CERP is OTX +

extensions

Concrete

artifact

Rule Lifecycle

7

Rules are created in:

Authoring tools

∙ Rule created in rule editors

∙ Feature list could be derived from product lifecycle management systems and bill of

material

Rules are executed in:

Online calibration tools

∙ Check individual parameter

∙ Usage of rules: Component protection, early feedback if tuning questionable

Data management systems

∙ Check complete datasets

∙ Usage of rules: Verify overall consistency, release preparations, later: generate default

calibration for new calibration variants

Industrialization

∙ Final verification

8

Product

Lifecycle

Management

Requirements

Management

Model Based

Software

Development

Rule Editor

Rule creation Rule consumers

Online

Calibration

Data

Management

Systems

Industrialization

Calibration
Rules

(OTX XML)

Feature list
• Check single characteristics

• Interactive operation

• Check rules

• Check all characteristics

• Check multiple variants

• Batch operation

• Check and data generation rules

• Check single or

multiple characteristics

• Check rules

Rule Lifecycle

Authoring and Runtime

9

Exchange format is always standardized XML

∙ OTX has only standardized XML notation

∙ Not suitable to be read by humans

Authoring tools

∙ Design rules with graphical notation, domain specific language or general purpose

language

∙ Convert to standardized XML for exchange

Runtime

∙ Runtime executed rules in online and offline calibration tools

∙ Possibility 1: Create OTX runtime and read XML directly into data model

∙ Possibility 2: Use existing runtime (JVM, CLR) and convert OTX to C# / Java for

execution

10

Graphical

editor

Authoring Runtime

OTX (XML) XML Parser OTX Runtime

Alternative 1: Graphical editor (Vendor A)

Alternative 2: Programming language (Vendor C)

Alternative 1: OTX runtime (Vendor B)

C# type

programming

language

OTX (XML)
XML

Parser
Converter

OTX -> C#

Converter

C# -> OTX

Alternative 2a): C# runtime (Vendor D)

Alternative 3: Database (Vendor E)

Rule database OTX (XML)
XML

Parser
Converter

OTX -> Java

Alternative 2 b): Java runtime (Vendor F)

C# runtime

(Microsoft

CLR)

Java

runtime

(Oracle

JVM)

These are just example scenarios!

Tool vendors could use programming language and runtime of choice.

11

Available Functionality

Read information from characteristic database (ASAM MCD-2 MC)

∙ Layout of characteristic in ECU

∙ Ranges, data types, max. dimension of arrays, units

∙ Functions, variant coding, system constants

∙ Simple but restricted “comfort” access; detailed “expert” access functions

Read value information from calibration tool runtime model

∙ Inspired by ASAM MCD-3 model (simplified and converted to procedures)

∙ Characteristic values, value units

∙ ECU and physical representation

∙ Simple but restricted “comfort” access; detailed “expert” access functions

Read feature values

∙ Read feature values from exchange feature XML file

Rule procedures

∙ Special OTX procedure to realize rules

∙ Rule procedure have predefined return type and supports precondition checks

Available Functionality

12

OTX Extension Overview

Orange: Shared extensions with CPX

Yellow: CERP extensions

StringUtil, Math: Shall be supported by CERP runtime

Artifacts in Context of Tool

13

OTX MC

Extensions
Rule script Calibration tool

Uses implements

Feature list

executes

loads

A2L DCM

CDFx

HEX

Motorola

loads

Characteristic values loaded from CDF2.0, HEX files

Characteristic database loaded from A2L

Feature list loaded from feature list XML

Rule script executed in calibration tool context

Rule scripts reads values, database and feature information from calibration tool model

via standardized interface

Outside scope

of standard

Subject of

standard

Legend

Concrete

artifact

Example
Non-standardized pseudo code

14

private MyRule (out RuleResult result, in Integer anInputVar)

{

 // Get ID of characteristic

 CharacteristicIdentifier idA = CreateCharacteristicIdentifier(Name = “ParamA”);

 // The reference value

 PhysicalValue refValue = CreatePhysicalValueByFloat (FloatValue = 17.3);

 string injector = GetFeature(“Injector”);

 // The actual comparison

 CompareRelation compRes = CompareCharacteristicPhysicalValue (characteristicIdentifier = idA, compareValue = refValue);

 if (injector == “TypA” && compRes == e_CR_Greater)

 {

 result.RuleState = Successful;

 }

 else if (injector == “TypB” && compRes == eCR_Less)

 {

 result.RuleState = Successful;

 }

 else

 {

 result.RuleState = Failed;

 result.RuleSeverity = Error;

 result.RuleMessage = “ParamA not in valid range for given injector type”

 }

}

Rule procedure

Unique identifier of

characteristic

Reference value

Current

physical value

of “ParamA” Set value of ParamA in

relation with feature

Error result

Read feature

CalibExtension Interface Definition
∙ Shared with CPX

∙ Describes 9 OTX extensions for calibration access

CERP Reference Manual
∙ Describes 3 OTX extensions only used by CERP

User Guide
∙ Intention and design principles of standard

∙ Implementation guide for tool vendors and rule editors

XSDs of OTX extensions
∙ XSDs contain OTX extensions

∙ Can be used to validate exchanged files

∙ One XSD that contains feature model

UML model
∙ UML model is master for reference guide and XSDs

XML examples
∙ Simple check rule examples in OTX exchange format

15

Deliverables

Compatibility

16

ASAM Standards

Database access for properties described in ASAM MCD-2 MC (ASAP2) V1.7

ISO

CERP is a set of extensions according to OTX (ISO 13209 1st edition)

OTX base language to express variables, sequences, loops, conditions, type system,

runtime model

