



# **Release Presentation**

## ASAM MCD-2 CERP/ P2014-02 / BS / V1.0

Calibration Expert System Rule and Product Model Format

Release Date: 2016/02/22



## **Motivation**

- Check correctness of calibration data ۲
- Automate checks ۲
- Check characteristics\* or hardware properties versus: ۲
  - Fix values .
  - Other characteristics
  - A2L properties
  - Hardware properties
- Exchangeable rule set:
  - Applied in different tools from different vendors
  - Applied at different points in calibration lifecycle

#### Later: Generate parameter values via rules

\* Characteristics = calibration parameters = labels = tuning variables = software constants



## Marketing

- Improve quality of calibration data
- Early quality feedback in calibration lifecycle
- Improved communication between software development, control loop design, calibration, test, quality assurance
- Automate checks
- Automatic and functional calibration in later phases



## **Features of Standard**

- Programming language OTX used as base
- Shared measurement and calibration extensions for OTX:
  - · Read or write characteristic values
  - · Read database (A2L) information
  - Compare characteristic values (ECU / physical representation, consider quantization, interpolate maps)
  - · Low level functions with access to all properties (expert view)
  - Comfort functions with limited but simplified access to most important properties (simple view)
- CERP private extensions for OTX:
  - · Access to feature (hardware properties)
  - · Rule procedure to express checks



# What are CERP Rules?

#### Rules

- Rules are small programs written in OTX
- Rules read calibration artifacts and calculate whether they are correct

#### **OTX programming language**

- OTX is a Turing-complete programming language
- OTX programs are exchanged in standardized XML notation
- OTX extension address calibration specific functionality

#### **CERP** extensions

- Core element of ASAM standard
- Extensions to read and write calibration artifacts







## **Rule Lifecycle**

#### Rules are created in:

- Authoring tools
  - · Rule created in rule editors
  - Feature list could be derived from product lifecycle management systems and bill of material

#### Rules are executed in:

- Online calibration tools
  - · Check individual parameter
  - · Usage of rules: Component protection, early feedback if tuning questionable

#### Data management systems

- · Check complete datasets
- Usage of rules: Verify overall consistency, release preparations, later: generate default calibration for new calibration variants

#### Industrialization

· Final verification



## **Rule Lifecycle**





## **Authoring and Runtime**

- Exchange format is always standardized XML
  - · OTX has only standardized XML notation
  - · Not suitable to be read by humans
- Authoring tools
  - Design rules with graphical notation, domain specific language or general purpose language
  - · Convert to standardized XML for exchange
- Runtime
  - · Runtime executed rules in online and offline calibration tools
  - · Possibility 1: Create OTX runtime and read XML directly into data model
  - Possibility 2: Use existing runtime (JVM, CLR) and convert OTX to C# / Java for execution





These are just example scenarios!

Tool vendors could use programming language and runtime of choice.



# **Available Functionality**

- Read information from characteristic database (ASAM MCD-2 MC)
  - · Layout of characteristic in ECU
  - · Ranges, data types, max. dimension of arrays, units
  - · Functions, variant coding, system constants
  - · Simple but restricted "comfort" access; detailed "expert" access functions
- Read value information from calibration tool runtime model
  - · Inspired by ASAM MCD-3 model (simplified and converted to procedures)
  - · Characteristic values, value units
  - · ECU and physical representation
  - Simple but restricted "comfort" access; detailed "expert" access functions
- Read feature values
  - Read feature values from exchange feature XML file
- Rule procedures
  - · Special OTX procedure to realize rules
  - Rule procedure have predefined return type and supports precondition checks



### Available Functionality OTX Extension Overview

#### **Test or Automation Application** StringUtil Math ISO OTX **OTX Core Processing System** OTX MC Shared Calib Calib Calib Term Procedure Expert Data Feature Experies Read Browsing Calib Rule Calib Calib Calib Data Procedure Check Read Write\* Browsing Supplier Specific Devices (e.g. MATLAB... **Calibration Data Management** Runtime System (e.g. MVCI Server, MCD-3D-Server...) Runtime S Environmen (Coordinator (e.g. MCD-3MC, Expert Systems)

- Orange: Shared extensions with CPX
- Yellow: CERP extensions
- StringUtil, Math: Shall be supported by CERP runtime

#### www.asam.net



## **Artifacts in Context of Tool**



- Feature list loaded from feature list XML
- Rule script executed in calibration tool context
- Rule scripts reads values, database and feature information from calibration tool model via standardized interface

Association for standardisation of automation and measuring systems

## **Example** Non-standardized pseudo code





## **Deliverables**

#### CalibExtension Interface Definition

- · Shared with CPX
- Describes 9 OTX extensions for calibration access
- CERP Reference Manual
  - Describes 3 OTX extensions only used by CERP
- User Guide
  - Intention and design principles of standard
  - Implementation guide for tool vendors and rule editors

#### XSDs of OTX extensions

- XSDs contain OTX extensions
- · Can be used to validate exchanged files
- · One XSD that contains feature model
- UML model
  - UML model is master for reference guide and XSDs
- XML examples
  - Simple check rule examples in OTX exchange format



# Compatibility

### **ASAM Standards**

Database access for properties described in ASAM MCD-2 MC (ASAP2) V1.7

### ISO

- CERP is a set of extensions according to OTX (ISO 13209 1<sup>st</sup> edition)
- OTX base language to express variables, sequences, loops, conditions, type system, runtime model