Getting a grip on the weather

Addressing the challenge of the environmental Operational Design Domain

Dr Dave Jones Principal Consultant Met Office, UK

21st March 2023 Technical Symposium

Association for Standardization of Automation and Measuring Systems

Met Office

UK's National Weather Service Owned by Government Provide critical weather services and climate science

Led by science

The Operational Design Domain (ODD)

"Operating conditions under which a given driving automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics."

- SAE J3016 (2021)

The weather is unlike any other part of the Operational Design Domain

It is transient in nature and, even if it stood still for a second, we would never observe it in sufficient detail to fully explain every change in the performance of an automated vehicle

The components of the problem

1. Unambiguous definitions

Are we all talking about the same weather?

2. Simplicity vs accuracy

The trade-off between usable ODD parameters and creating rich scenarios for simulation

3. Embracing uncertainty

Representing what we *can't* explain in our scenarios

Sensor Assurance Framework

Met Office and National Physical Laboratory (NPL) funded by Centre for Connected & Autonomous Vehicles (CCAV)

Aim:

To specify <u>a usable and</u> <u>reliable</u> framework for characterising AV sensor performance in different weather-related conditions

STOP

Unambiguous definitions

Rainfall example

32.0+ mm/hr 16.0 - 32.0 8.0 - 16.0 4.0 - 8.0 2.0 - 4.0 1.0 - 2.0 0.5 - 1.0 0.25 - 0.5 0.1 - 0.25 No data

Met Office **NPL**

Unambiguous definitions

Rainfall variability within a weather radar pixel

Set Office NPL ♀

Simplicity vs accuracy

Not all rain is the same

Modelled 77GHz radar attenuation

All aspects of the problem have uncertainty

Met Office **NPL**

All aspects of the problem have uncertainty

All aspects of the problem have uncertainty

All aspects of the problem have uncertainty

ASAM opportunities:

Work towards common methods of describing uncertainty

Develop methodologies for sampling the uncertainty in simulation

Thank you!

Please do get in touch:

Dave Jonesdave.jones@metoffice.gov.ukMike Szczepanskimichael.szczepanski@metoffice.gov.ukHenry Odberthenry.odbert@metoffice.gov.uk

Acknowledgements: The Met Office and NPL SAF teams CCAV & DfT Siddartha Khastgir (ODD definition slide)

Photo credits: John Hallam (Cumulonimbus cloud) Pexels/Pixabay (Droplets) Pexels/Darshak Pandya (Person in rain)

