

FRAMEWORK FOR STANDARDIZATION OF THE INTERFACE BETWEEN SENSORS, VEHICLE PLATFORMS, AND SENSOR CLEANING SYSTEMS

Pitch Session - Ideation Topics for 2023 and Beyond

Snapshot

- Vision sensors are all around us ADAS equipped cars, smart cities, and smart manufacturing.
- I When sensors get dirty or wet, overheated, or misaligned customers cannot trust sensor data anymore.
- I According to AAA, ADAS-equipped vehicles suffer 33% more accidents in rainfall even driving as slow as 35 mph.
- I Sensor cleaning must be energy-efficient to enable perception under day-to-day conditions, on electric vehicles.

Industry Challenge

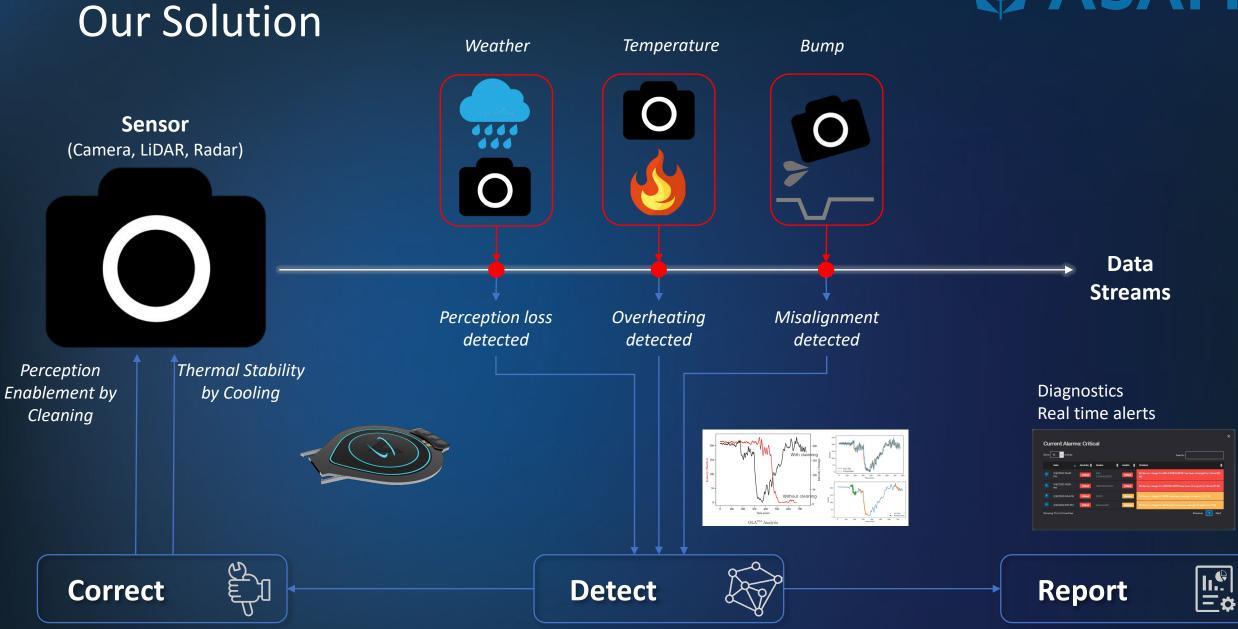
Detect

Process sensor output data and identify and classify function Loss

Correct

Apply corrective measure

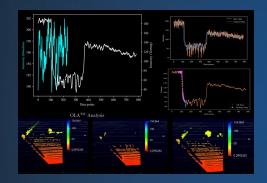
Sensor Function Loss

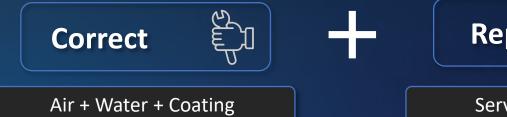


Report

Diagnostics & Real time alerts

4

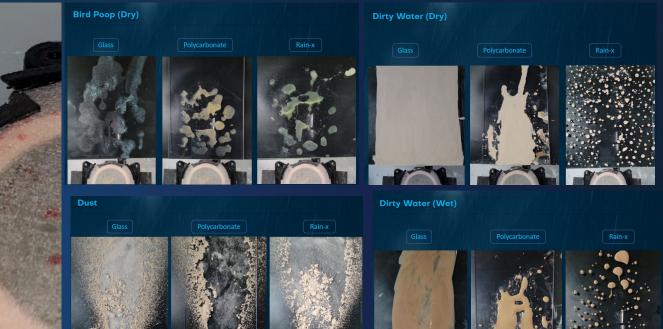




Solutions

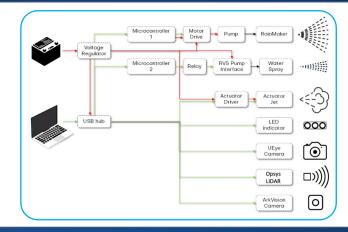
- Detection using ML video analytics algorithms for real-time processing.
- Sensor function loss ML Model to predict sensor perception level drop under various environmental conditions.
- Embedded controls in vehicle ECU.

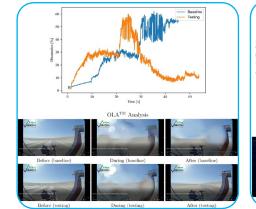
- Sensor-agnostic integrated cleaning solution.
- Solution including airflow and water spray to address broad range of environmental conditions.
- Extremely efficient on water and energy consumption.

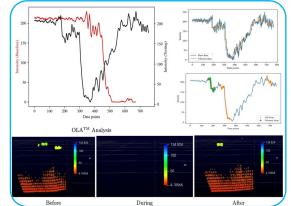

Show	10 ventries				Search
	Date	Seventy 🖨	Devloe	Health 🖨	Problem
	2/8/2020 10:40 PM	Critical		Critical	
	2/8/2020 10:36 PM	Critical		Critical	
		Ontical		Marring	
		Critical		Marrieg	

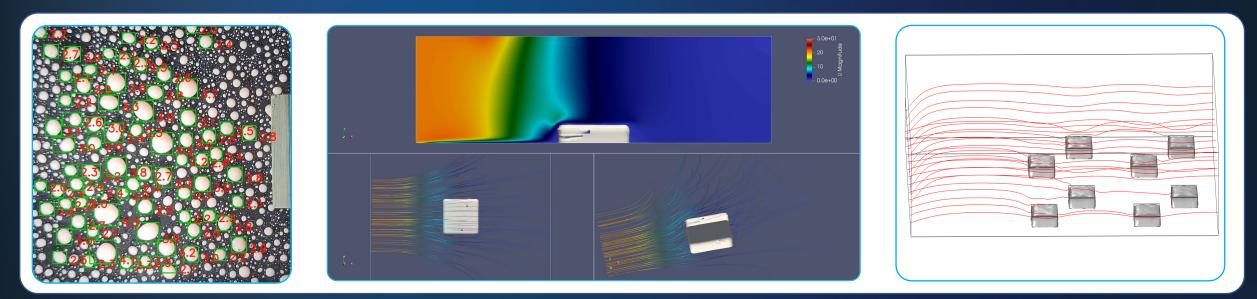
- I Predictive maintenance and telematics.
- I Over the air system updates and upgrades.
- I Data provided through third party data provider.

Real-world Contamination


AL.





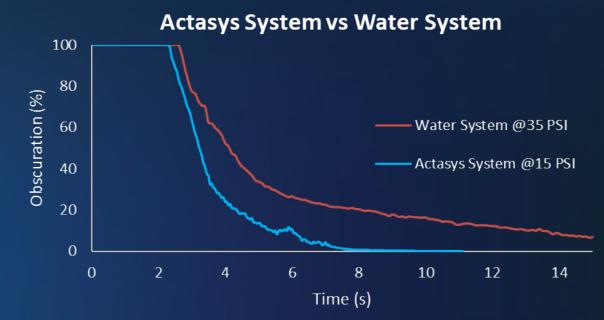

Quantifying Sensor Degradation

Energy Efficiency

Water Alone

- Water Pressure: 35 PSI
- Flow Rate: 0.216 LPM

Water + Actuator


- Water Pressure: 15 PSI
- Flow Rate: 0.133 LPM

Energy Calculator

Inputs:	Battery Capacity (kWh)	Efficiency (mi/kWh)	Vehicle Weight (kg)	# of Lidars	# of Cameras	Actuator Driver Voltage (V)	Actuator + Driver Weight (kg)	Water Pump Power Consumption (kWh)		
	78	3.21	2000	5	13	12	1.98	0.036	Γ	
	Surface Contact Angle	Frequency (Hz)	Voltage (Vrms)	Curretnt (A)	Power Consumption (kWh)					
Actuator	25	180	100	0.87	45.47664		Weight Calculations			
Testing Data:	70	160	100	0.964	50.390208		100 kg = ? kwh/62mi	0.6		
	90	140	100	0.938	49.031136		x kg = ? kwh/62mi	0.07968		
	110	120	100	0.854	44.640288		Power Consumed (kWh)	16.79448774		
	150	100	100	0.72	37.63584					

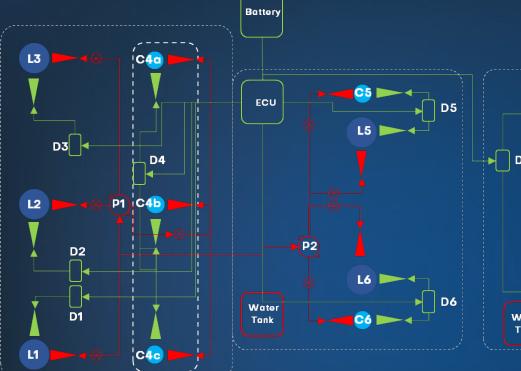
	Driving No Actuators	Driving w/Actasys @ 25 deg Contact angle	Driving w/Actasys @ 70 deg Contact angle	Driving w/Actasys @ 90 deg Contact angle	Driving w/Actasys @ 110 deg Contact angle	Driving w/Actasys @ 150 deg Contact angle
Time Driving in the Rain (hrs)	242	242	242	242	242	242
Driving Speed (mph)	54	54	54	54	54	54
Driving Distance (mi)	13068	13068	13068	13068	13068	13068
Power Consumed (kWh)	4071.028	4133.299	4138.213	4136.854	4132.463	4125.458
Efficiency (mi/kWh)	3.21	3.162	3.158	3.159	3.162	3.168
Percent Decrease in Efficiency (%)		1.51	1.62	1.59	1.49	1.32
Cost in US (USD)	692.07	702.66	703.50	703.27	702.52	701.33
Cost in Europe (USD)	1872.67	1901.32	1903.58	1902.95	1900.93	1897.71

Energy Consumption By Region

-	Number of Rainy	Precipitation Rate	Power Consumption (kWh)*		
City	Days (Per Year)	(in/day)	Compressed Air	Actasys	
Pasadena, CA, US	35	0.57	71.6	4.7	
Beijing, China	68	0.28	139.1	9.13	
Moscow, Russia	169	0.15	345.6	22.7	
Berlin, Germany	159	O.14	325.2	21.4	
Cairo, Egypt	15	0.07	30.8	2.01	

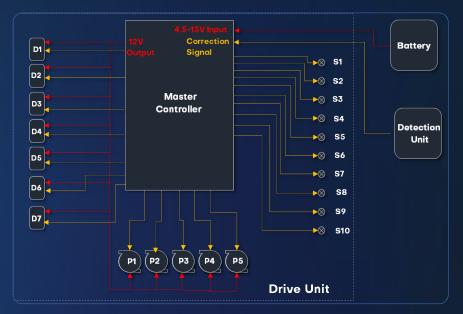
Assumptions:

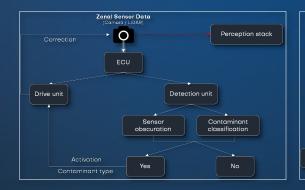
11.3

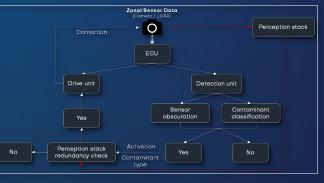

* Based on energy consumption calculator – L4 Autonomous vehicle with 5 Lidars and 13 Cameras. Assumed that both systems are running continuously

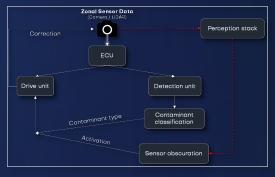
** Assumed each day vehicle is driving in the rain for 1 hour

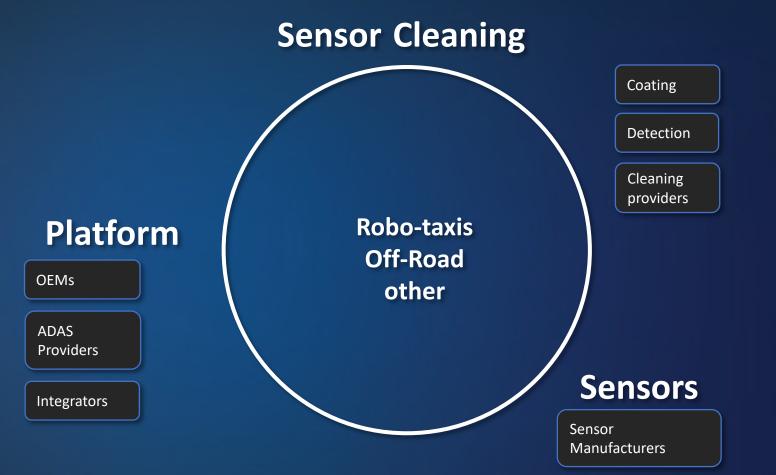
*** Weather References: Pasadena – <u>Link</u> , Beijing – <u>Link</u> , Moscow – <u>Link</u> , Berlin – <u>Link</u> , Cairo – <mark>2</mark>




System Interfaces – Power, water, data




Power Supply


Data flow options

Let's Discuss on How to Interface

11

Thank you!

david.Menicovich@actasysinc.com