
Release Presentation

ASAM AE XIL 2.1
Generic Simulator Interface

2017-06-26

Introduction and General Concepts

What’s New?

Deliverables

Compatibility

History and Outlook

2

Agenda

3

Proprietary

XIL Standard

 Separation of Test HW and Test SW by means of standardized APIs

Motivation of the Standard

4

ECUPort

The ECUM port allows capturing

and reading of measurement

variables. The ECUC port is used

for calibration.

NetworkPort

provides access to field bus

systems such as CAN. E. g. Allows

measurement (monitoring) and

transmission (single transmit or

replay) of bus data.

EESPort

Electrical Error Simulation port

controls electrical error

simulation hardware. It allows

the setup of different types of

errors (e. g. short cuts).

DiagPort

Diagnostic port communicates

with a diagnostic system,

reads data via diagnostic

services from an ECU.

MAPort

Model Access port provides

access to the simulation model

read and write parameters,

capture and generate signals.

Standard

Proprietary

Concept of Ports

5

Standard

Proprietary

Proprietary

Port-based Access of a

Test Automation Tool

6

Major Benefits:

∙ Port independence of testcases by using an object-oriented access to variables

∙ Framework starts and shuts down ports in a configured order

∙ Test Developer can use both: Testbench Port access and Variable-based access

∙ Framework Variables provide access to the underlying Testbench Port

Framework-based Access to Testbench

7

More Details

https://wiki.asam.net/display/STANDARDS/ASAM+XIL

https://wiki.asam.net/display/STANDARDS/ASAM+XIL

Pause Simulation

Support of Real-Time Scripts

Parameterized SignalDescriptions

Relation between Simulation and Capturing / Stimulation

Capture Client Events

Read/Write Simultaneously

Check Variable Names

Download Parameter Sets

New Version of General Expression Syntax (GES) 1.0.1

Relation to FMI:

Support of the variability tunable, fixed and const

DiagPort

8

What’s New?

9

eSIMULATION_PAUSED state can be entered by either a method (PauseSimulation) or a

MAPortBreakpoint

Pause Simulation

10

Users can administrate scrips (e.

g. for real-time based tests)

analogue to the well known

SignalGenerator for stimulation,

such as LoadToTarget, Start,

Stop.

Support of Real-Time Scripts

11

SignalDescriptions support

expressions with placeholders to

be assigned to SignalSegment

parameters.

Benefits:

This significantly increases

reusability of SignalDescriptions.

With expressions and

placeholders properly applied a

client does not need to know

about the segment structure and

the interrelations when using

and adapting a predefined

SignalDescription.

Parameterized SignalDescriptions

12

Relation between Simulation and Capturing / Stimulation

The synchronous behavior of start/stop and pause a simulation in relation to multiple captures and to

stimulations has been defined precisely. For example, if a simulation pauses at the MAPort, then the

simulation time freezes and so does the time in the corresponding Capture and SignalGenerator

objects.

Time freezes

13

Capture Client Events

Users can add events at the Capture object,

e. g. to bookmark or label interesting

situations (e. g. due to electrical error

simulation or feedback of the diagnostic

system).

The CaptureResult object provides a getter

getEvents() to access the captured events.

14

Read/Write Simultaneously

Ensure that reading and writing of

multiple model variables takes place

in the same simulation step or in the

same cycle of a given task.

15

Check Variable Names

Allows the user to check, whether

variable names exist or not.

The method checks if the given

variable names are valid variable

names with the current port

configuration. Invalid names are

returned. If all names are valid the

returned list is empty.

16

Download Parameter Sets

Loads the specified parameter set

files and writes the contained

parameter values to the

corresponding variables of the

simulation tool or hardware

17

New Version of General Expression Syntax (GES) 1.0.1

New additional methods to detect

value changes

Support of a new constant INF Infinity, to configure the borders of the

data file segment within stimulations.

18

Relation to FMI:

Support of the variability tunable, fixed and const

XIL already defines a

MAPortVariableInfo object to check

if a variable is readable or is

writeable.

The interpretation of the

IsReadable/IsWriteable method

results has been defined as

described in the table according to

the variability of FMI.

https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf

19

DiagPort (1)

DiagPort classes have

been re-designed to

bring the DiagPort into

operation.

class DiagPort

DID

«getter»

+ getIdentifier(): A_UINT16

+ getName(): A_UNICODE2STRING

DIDValue

«getter»

+ getDID(): DID

+ getRawValue(): A_BYTEFIELD

+ getValues(): DataValue[]

«setter»

+ setRawValue(A_BYTEFIELD): void

Port

DiagPort

+ Configure(DiagPortConfig): void

+ GetECU(A_UNICODE2STRING, A_UNICODE2STRING): ECU

+ GetFunctionalGroup(A_UNICODE2STRING, A_UNICODE2STRING): FunctionalGroup

+ LoadConfiguration(A_UNICODE2STRING): DiagPortConfig

«getter»

+ getConfiguration(): DiagPortConfig

+ getState(): DiagPortState

ECU

+ CreateDIDByIdentifier(A_UINT16): DID

+ CreateDIDByName(A_UNICODE2STRING): DID

+ CreateDIDByShortIdentifier(A_UINT8): DID

+ ExecuteJob(A_UNICODE2STRING, BaseValueNamedCollection): DataValue[]

+ GetCommunicationMode(): CommunicationMode

+ GetCommunicationStatus(): CommunicationState

+ GetECUBaseController(): ECUBaseController

+ GetEcuFaultMemory(): ECUFaultMemory

+ GetIdentificationData(): DID[]

+ GetVariantData(): DIDValue[]

+ ReadDIDValue(DID): DIDValue

+ SetCommunicationMode(CommunicationMode): void

+ SetVariantData(DIDValue[]): void

+ StartCommunication(): void

+ StopCommunication(): void

+ WriteDIDValue(DIDValue): void

«getter»

+ getECUID(): A_UNICODE2STRING

+ getLogicalLinkName(): A_UNICODE2STRING

DataValue

«getter»

+ getPath(): A_UNICODE2STRING

+ getPhysicalValue(): BaseValue

+ getRawValue(): A_BYTEFIELD

«setter»

+ setPhysicalValue(BaseValue): void

+ setRawValue(A_BYTEFIELD): void

ECUFaultMemory

+ Clear(): void

+ Read(DtcFilterType): DiagTroubleCodeByA_UINT64Collection

DiagTroubleCode

+ GetDescription(): A_UNICODE2STRING

+ GetEnvironmentDataCollection(): DataValue[]

+ GetLongName(): A_UNICODE2STRING

+ GetShortName(): A_UNICODE2STRING

+ GetStatus(): A_UINT8

+ GetValue(): A_UINT64

20

DiagPort (2)

Macro classes have

been removed due to

missing relevance.

XIL 2.0.2 XIL 2.1

Compatibility

21

The API elements listed in the

second column of the table are

deprecated and might be removed

in a future version of the standard.

So it is recommended to use the

replacement depicted in the third

column.

Note: Changes and extensions in

DiagPort are not compatible to XIL

2.0.2.

Package Standard

Package XilSupportLibrary (framework software parts)

Package Example Framework

Package Prototype and test environment

Package MSI Setup

22

Deliverables

23

2009 (July) HIL API 1.0.0

2010 (December): HIL API 1.0.1

2012 (January) HIL API 1.0.2

2012 (June) Crosstest No. 1 (among 4 vendors)

2013 (February) Crosstest No. 2 (among 5 vendors)

2013 (October) XIL API 2.0.0

2014 (October) XIL API 2.0.1

2015 (October) XIL API 2.0.2

2016 (July) Crosstest No. 3 (among 7 vendors)

2017 (June) XIL API 2.1

2017 (October) Crosstest No. 4 (Planned)

2018 XIL API 2.1.1 (Planned)

2019 XIL API 2.1.2 (Planned)

History & Outlook

