SOVD – Service Oriented Vehicle Diagnostics

Bernd Wenzel ASAM e.V.

Tobias Weidmann Vector Informatik GmbH Stuttgart/Dresden 27.04.2022

Association for Standardization of Automation and Measuring Systems

Agenda

1	Motivation
2	Concepts
3	Methods Overview
4	CDA
5	Next Steps

Motivation

- Support of next generation software architectures
- ADAS using HPC's (software-based systems)
- Continuously Update of software in the vehicle, also providing new functionalities
- Vehicle as IOT device
- Analysis of software while running (not simple reading of Error codes)
- Not limited to data Use cases, also considered process related use cases
- Support of interactive generic diagnostics

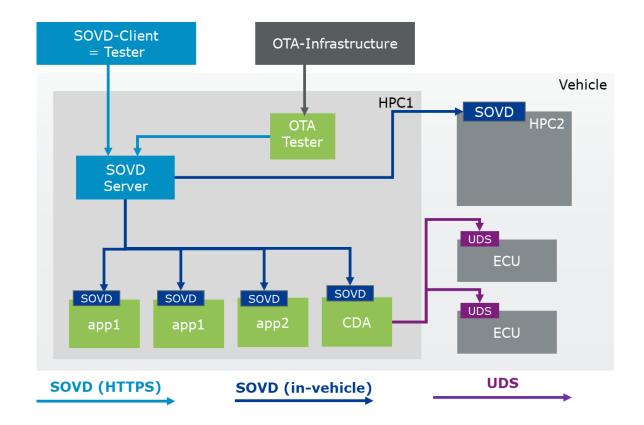
Motivation

Why is there a need for something beyond UDS?

- UDS is still the choice for classic ECUs but will not cover all requirements of future systems
- Not designed to be flexible, Requires static description of content
 - Hard to keep this up-to-date if the vehicle is constantly updated
- Data required for diagnosing SW-based systems does really fit to todays UDS (byte-) based world
 - Read and filter accumulated and structured logs & traces
 - Read faults and crashes with environment data like e.g. stack traces
 - Install and remove apps, Update software
 - Access terminals
 - Continuously stream logs, traces, metrics and data like e.g. camera input
- SOVD will not replace UDS, we expect a co-existence

SOVD API (Next Generation Diagnostics)

Remote


- SOTA
- Backend evaluation
- Fleet management
- Remote assistance (also on roadside)
- Activation on functionality as paid by costumer

Proximity

- Workshop / Service
- Manufacturing (e.g. EOL)
- Emission check and ePTI

In-Vehicle

- Monitoring (sporadic errors)
- Predictive maintenance
- Health status access

Concepts HTTP/REST in a nutshell

- REST is based on HTTP, basically a web browser is sufficient to execute
- Resources are the core element
- Dedicated HTTP Verbs are called on the resources offered by the server
- Knowledge of the initial URL is sufficient, further links are provided to discover the API
- REST is stateless, i.e.
 Every request contains all the relevant information that the server can process it

0	localhost:34568/MyServer/Vehicle × +					
←	→ C 1 Iocalhost:34568/MyServer/Vehicle/ecus/body_ctrl_front/features/iddata/activediagnosticinformation					
	\pps					
1	// 20200626074717					
2	<pre>// http://localhost:34568/MyServer/Vehicle/ecus/body_ctrl_front/features/iddata/activediagnosticinformation</pre>					
3						
•	{					
- T	"activediagnosticinformation": {					
5 🔻	"Active_Diagnostic_Session": {					
7	"encoding": "UTF8_FIELD",					
8	"name": "Active Diagnostic Session",					
9	"value": "Extended"					
0	},					
1 •	"Active_Diagnostic_Variant": {					
2	"encoding": "UNS",					
3	"name": "Active Diagnostic Variant",					
4	"value": "0"					
5	},					
б т	"Active_Diagnostic_Version": {					
7	"encoding": "UNS",					
8	"name": "Active Diagnostic Version",					
9	"value": "0"					
0	},					

No automotive specific stack needed on Client side

Structure of the Service Specification

Method:

GET/<entity path>/data/<ResourceName>

<u>Method description</u> Service semantic (described as OpenAPI spec)

Path Parameters Identification of requested resource <u>Query Parameter ^{*1}</u> Selection of optional response members, typically used for include-schema

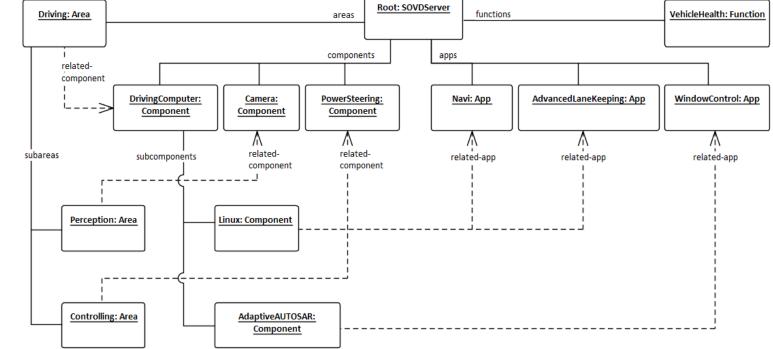
<u>Request Header</u> Selection of requested Content-Type and handover of authorization credentials

Request Body *1

Data transmitted from SOVD Client to SOVD Server

Parameter Name / Attribute	Туре	Convention	Description
		M/O/C	

VECTOR


Method for Capability discovery

Access to Capability Description Content

Query an Online Capability Description

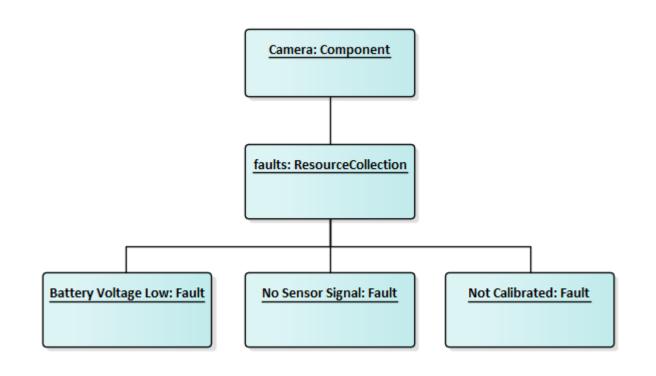
Discovering of Entities and Resources

- Discover Contained Entities
- Query Sub-Entities of an Entity
- Query related Entities of an Entity
- Query Entity Capabilities

Identical format for Offline and Online Capability description used, based on OpenAPI format

Method for Fault Handling

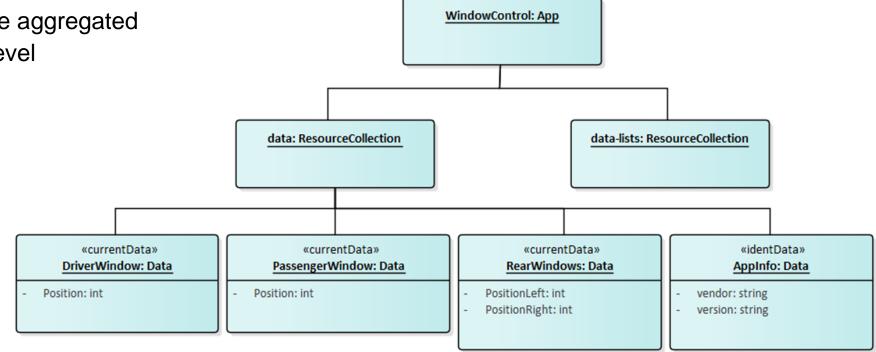
Provided Methods


- Read Faults from an Entity
- Read Details for a Fault
- Delete all Faults of an Entity
- Delete Single Fault of an Entity

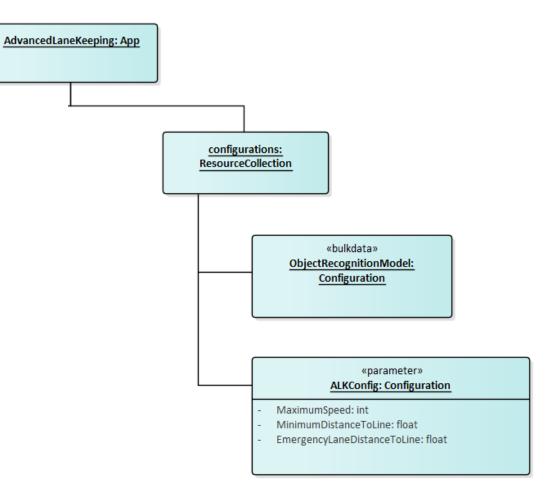
Query Parameters

- Status, based on Key Value Pair
- Severity

Access to environment data for a single fault code


OEM specific key value pairs

Method for Data Resource read / write access

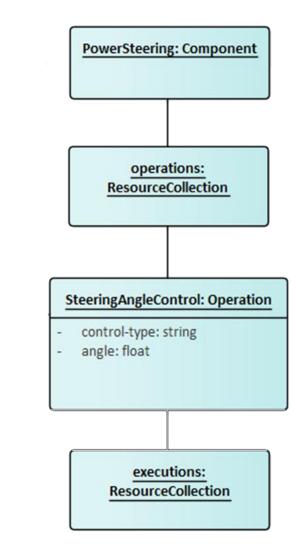

- · Retrieve the list of data available for an entity
- Data is categorized according to its semantic
 - E.g. currentData, identData, storedData, sysInfo
- Read/Write Access to Data
- Possibilities to group data
- Possibilities to create aggregated data sets on entity level

Method for Configuration

- Retrieve List of all Configurations Provided by the Entity
- Read and Write Configuration as Parameters
- Read and Write Configuration as bulk data

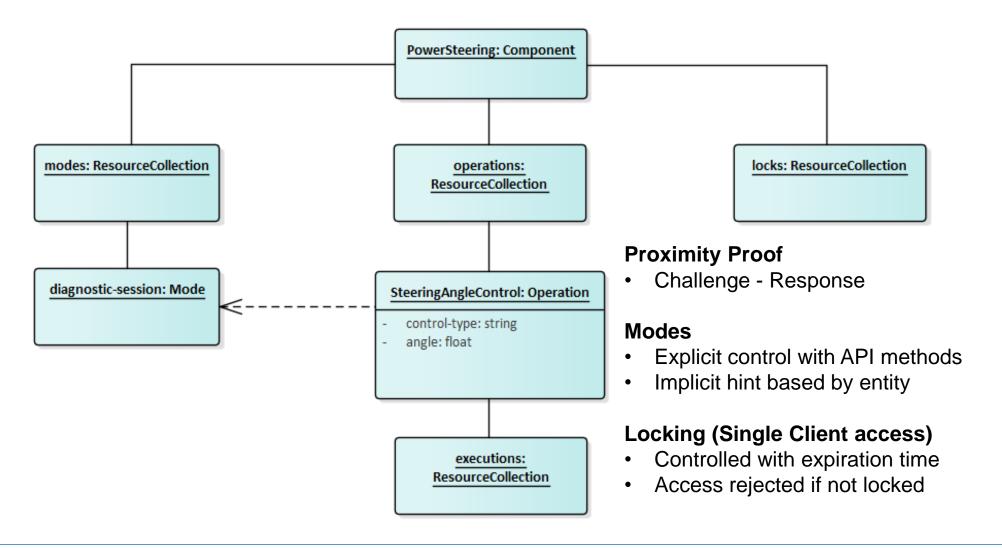
Method for Control of Operations

Operations (SW-internal functions, Actuators)


- Retrieve List of all Available Operations from an Entity
- Get Details of a Single Operation
- Start Execution of an Operation
- Get Executions of an Operation
- Get the Status of an Operation Execution
- Stop the Execution of an Operation
- Support for execute / freeze / reset and OEM-specific Capabilities

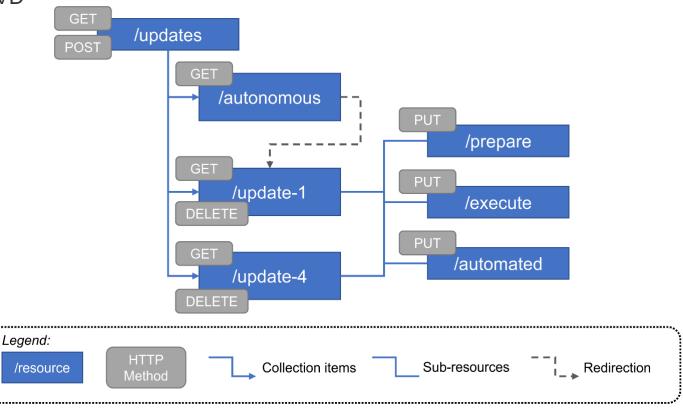
Target Modes

- Retrieve List of all Supported Modes of an Entity
- Get Details of a Single Mode of an Entity
- Explicit Control of Entity States via their Defined Modes


Locking

- Acquire a lock on an entity
- Get all acquired locks of an entity
- Get a single active lock of an entity
- Extend an acquired lock on an entity
- Release an acquired lock on an entity

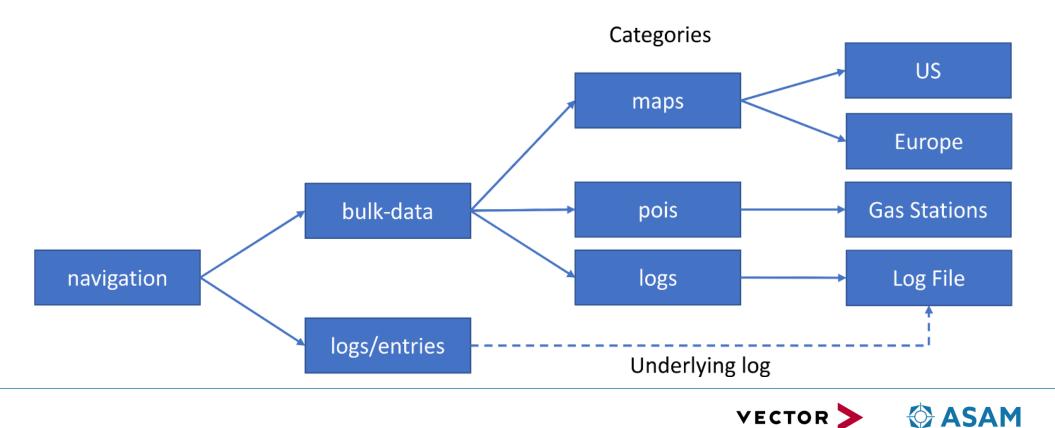
Method for Control of Operations


Method for Software Update

Basics

- It is assumed that there is a central component in the vehicle which performs the software update
- ASAM SOVD provides an API to trigger this central software update component
- Update procedure itself is not subject to ASAM SOVD

Methods


- Retrieve List of all Updates Provided by the Entity
- Get Details of Update
- Automated Installation of an Update
- Prepare Installation of an Update
- Execute Installation of an Update
- Get Status of an Update
- Delete Update Package from an SOVD server
- Register an Update at the SOVD server

Method for Handling of bulk-data

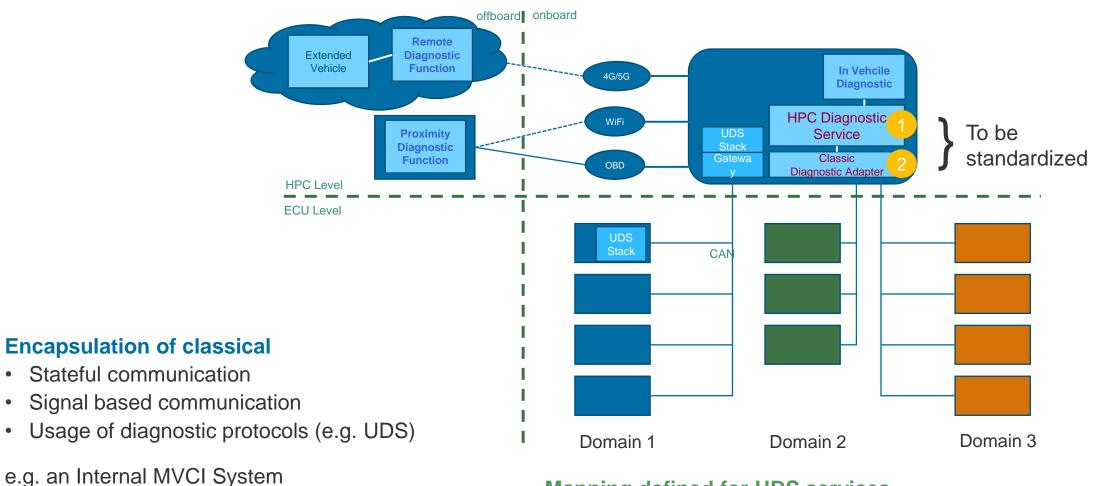
- Retrieve List of all bulk data Categories
- Read bulk data Meta Data
- Download bulk data
- Upload bulk data
- Delete all bulk data Defined by Category
- Delete specific bulk data Resource

Method for Logging

- Retrieve List of all log Information
- Configure SOVD Logging
- Retrieve the current SOVD Logging Configuration
- Reset SOVD Logging Configuration to Default

Principle

- Access to aggregated log information
- Evaluation by software experts
- Transport as bulk-data possible


Supported Context Types

- RFC 5424 (Syslog Protocol)
- AUTOSAR Diagnostic Log and Trace

Classic Diagnostic Adapter

Easy migration between classical and web-based access

Mapping defined for UDS services

•

•

SOVD inside the standardization landscape

ASAM SOVD 1.0

- Public Review for SOVD 1.0 is in progress
- Release on TSC meeting in July

AUTOSAR Alignment

- Involved in Internal review
- Handled in concept group 704
- ara::diag extension

ISO Stadardization

- ISO SC 31 / WG 2
- NWIP will be presented in June 2022

ASAM Follow Up project

- Planed for 09/2022 12/2024
- Compatible minor version
- Integration of ISO feedback
- Event based communication

Thank you for your attention!

Bernd Wenzel Senior Technical Consultant ASAM e.V.

Phone: +49 371 5607 742 Email: bernd.wenzel@asam.net Tobias Weidmann Manager Customer Services Vector Informatik GmbH

Phone: +49 711 80670 2549 Email: tobias.weidmann@vector.com

