OpenSCENARIO 2.0 Implementers Forum

Introduction to the Language

Pierre R. Mai

2022-01-17

PMSF IT Consulting Teams

> 77/
i L A %M,‘ 74

& i il
| A ASA M Association for Standardization of
1 \\7] Automation and Measuring Systems



Introduction to the Language

Python-like syntax Semantics

* Line structured * Denotational semantics provided in standard

* Indentation-based blocks » Duality of interpretation of scenarios

Nature of language Outlook / Postponed to Future Development (2.x)
* Declarative language « Namespaces for structuring of large sets of

. Static type system scenarios/libraries

- Extensibility via inheritance and extension * Standardized foreign function interface (FFI)

« Conditional inheritance for classifications * More formal standardization of action semantics

. Constraint-based parameter resolution + Operationalized semantic specification

Large-scale structuring Resources for working with the language

« Import mechanism « EBNF grammar (using Python-style EBNF syntax)

- Extensibility via external methods * Ppy-osc2 antlr4 parser

* Implementers Forum discussions

2 & ASAM



OpenSCENARIO 2.0 Syntax

« Python-like base Syntax

* Line structured

« Blocks are indentation-based
« Keywords to aid readability

import "foo.osc"
import osc.standard

scenario foo:
field: float
bar: float = 4.0

scenario baz inherits foo:
newfield: float

def mymethod(abc:float, dd:float = 42.0) -> float is expression abc*dd

scenario bazzle:
another: float
do baz(field: 2.0, newfield: another

enum storm type: |[rain_storm, ice_storm, snow_storm

struct storm_data:
storm: storm_type
wind_velocity: speed

scenario env.snowstorm:
storm_data: storm data with
keep(it.storm == snow_storm
keep(default it.wind_velocity >= 30kmph

cover(wind_velocity, expression: storm_data.wind_velocity, unit: kmph

& ASAM



OpenSCENARIO 2.0 Language Constructs

Overall structure of a scenario file

* Prelude statements: import import "foo.osc”
import osc.standard

type speed is SI(m: 1, s: -1

¢ Type declarations: unit mps speed is SI(m: 1, s: -1
* Non-structured types: unit [m/s| of speed is SI(m: 1, s: -1
» Physical types/units unit kmph speed is SI(m: 1, s: -1, factor: 3.6
« Enumerations enum storm_type: [rain_storm, ice_storm, snow_storm
« Aggregate types:
e Lists struct storm_data:
storm: storm_type
* Structured types: wind_velocity: speed
* struct
* actor actor env:

. . air_temp: temperature
» scenariofaction -

* modifier scenario env.snowstorm:

storm_data: storm_data with

. . - . keep(it.storm == snow_storm
Scenario ent_ry pomt. i ] keep(default it.wind_velocity >= 30kmph
Implementatlon/user-deflned in PRC cover(wind_velocity, expression: storm_data.wind_velocity, unit: kmph

modifier fast_storm of env.snowstorm:
keep(it.storm_data.wind_velocity >= 80@kmph

4 & ASAM



OpenSCENARIO 2.0 Language Constructs

Structured types, contents and extension

« All structured types can contain:
* Fields: Parameters / Variables
 Events
* Constraints
 Methods

« cover/record

« Scenarios/actions/modifiers add:
* Modifier invocation
- on directive
« do directive (scenario/action only)

» Structured types can be extended:
* (Single-)Inheritance (inherits)
« Extension of type from outside (extend)
* Inheritance can be conditional:
Instances are automatically
of a derived type, if condition holds.

scenario blackout:
duration: time
intermittent: bool
var variable: float = 4.0
event blackout_started(duration: time
keep(default duration == 30s
def calc_duration(step: time, times: float) -> time
is expression step*times
cover(duration
do emit blackout_started(duration: duration

scenario level blackout inherits blackout:
level: float
def calc_duration(step: time, times: float) -> time
is only expression step*times + (1-level)*1s

extend level blackout:
timefactor: time
def calc_duration(step: time, times: float) -> time
is only expression step*times + (1-level)*timefactor

actor vehicle:
is_electric: bool

actor electric_vehicle inherits vehicle(is_electric: true
battery capacity: energy

& ASAM



OpenSCENARIO 2.0 Language Constructs

Behavior specification, temporal operators

» Behavior specification
« on directive: React to events

e do directive: Unconditional behavior scenario foo:
car: vehicle
event my_event

. on directive content: def my method(abc: float, dd: float = 42.0) is external xxx.yyy()

 emit an event on blackout.blackout started as ev if ev.duration >= 20s:
e call amethod call my_method(abc: 42)
emit my_event
 do directive content: do Se'“?ili o o
. . wait car.speed >= m
* |nvoke scenario/action parallel: g g
* wait directive (wait for something) car.drive()
e emit an event blackout(duration: 30s)

call a method
Temporal composition:

 serial
e one_of
e parallel

6 & ASAM



PMSF py-osc2 Framework

Python-based Framework for OpenSCENARIO 2.x Files

‘= READMEmd

« Currently provides: PMSF py-osc2 Framework
® ANTL R4'based parser Build and Publish to PyPI| passing

» CLI tool for syntax checking

PMSF py-osc2 is a Python package for working with ASAM OpenSCENARIO 2 scenario files.

® FUtU re en hancements Note that this package is currently provided as a community service. It is based on the current public review draft of

the language, which is non-final, and might include updates based on current developments. It is offered without any

o Sema ntIC Ch eCkS (I nCI . I m po rtS) Specifically both the public review draft standard, this rendering of the grammar in ANTLR4, and any intermediate

fixes might contain errors.
MNor is the rendering of the grammar in ANTLR4 intended for purposes other than the goals of this package.

If you are interested in OpenSCENARIO 2 development, please feel free to contact us directly.

What is it?
° More Soph iSticated Syntax Ch eCki ng support and should be considered draft alpha quality.
- Status: Main features

« Initial alpha releases, based on PRC

Languages

pypi (w0.0.4 [ status alpha | license Mozlla Public License 2.0 (MPL 2.0) | downloads 681

* ANTLR4-based parser and lexer for parsing ASAM OpenSCENARIO 2.x files.

(] Wi ” be u pd ated as P RC iS fi nal ized * Simple syntax checking driver osc2parser for parsing and checking ASAM OpenSCENARIO 2.x files.
Where to get it

° Ava i Ia ble On PyP I , G itH u b (M P L 2 . 0 ): The source code is currently hosted on GitHub at: https://github.com/PMSFIT/py-osc2
° https //pvpl . Orq/p rOIGCt/DV-OSCZ/ Binary installers for the latest released version are available at the Python Package Index (PyPI).
* https://qithub.com/PMSFIT/py-osc2

pip install py-osc2

® Python 97.8% ANTLR 2.2%

o ASAM


https://pypi.org/project/py-osc2/
https://github.com/PMSFIT/py-osc2

Q & A Session

8 & ASAM



Thank you for your attention!

Join us in the Implementers Forum!

Pierre R. Mai
PMSF IT Consulting

Phone: +49-8161-97696-11
Email: pmai@pmsf.de

9 & ASAM



	OpenSCENARIO 2.0 Implementers Forum
	Introduction to the Language
	OpenSCENARIO 2.0 Syntax
	OpenSCENARIO 2.0 Language Constructs
	OpenSCENARIO 2.0 Language Constructs
	OpenSCENARIO 2.0 Language Constructs
	PMSF py-osc2 Framework
	Q & A Session
	Thank you for your attention! ��Join us in the Implementers Forum!

