

OpenLABEL 1.0 Standard

WP 3 : Object and Scene Labeling

Goal of this slot:

- Brief overview
 - What is already included in the current version
 - What will be included in the future
 - Reasoning behind our decisions

Tim Rädsch Technical Project Manager understand.ai

Feel free to ask questions or contact us regarding OpenLABEL.

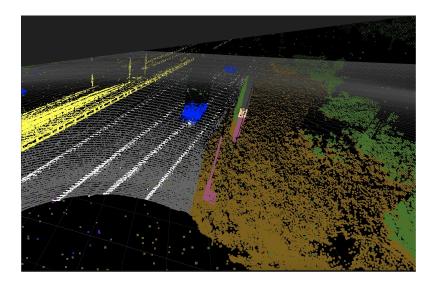
Every day challenges

Use the chat: Enter 1 for Truck | Enter 2 for Car

It depends on your definition

Class: Truck Class: Car Class: Pickup

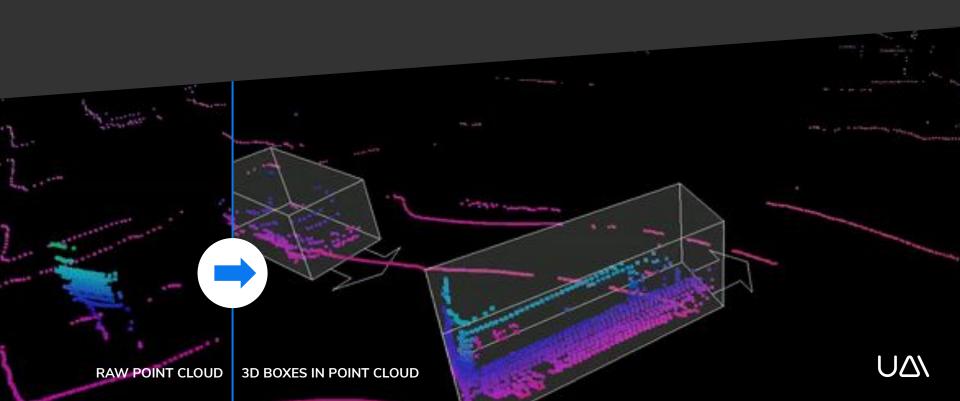
Definition can already change with the department next door.



Which sensor modalities are included?

Camera

Pointclouds



Which annotation types are included (from the beginning)?

- Understand requirements of stakeholders
- Focus on joint consensus
- Get market acceptance -> OpenLABEL gets used
- Keep requirements in mind during design
- Extend in forthcoming iterations
- Focus topics OpenLabel 1.0:
 - 3D Cuboids
 - 2D Bounding Box
 - 2D Semantic Segmentation (different types)

3D Cuboids

2D Bounding Box

2D Semantic Segmentation

2D Segmentation types

Semantic segmentation taxonomy

- Partial scene Segmentation when $\exists p_x \in P: (p_x, c_y) \notin R_{seg}$. There are some pixels that have no classes associated with them. In this case $D \subset P$
- Full scene Segmentation when ∀p_x ∈ P, ∃c_y ∈ C : (p_x, c_y) ∈ R_{seg}. All the pixels have a class associated. In this case D coincides with P. Notice that in the case we use the class "unlabeled", or "other" to indicate all the pixels outside the real classes of interest, we are still performing a form of full scene segmentation.
- Single-class per pixel Segmentation when $\forall p_x \in D, \exists ! c_y \in C : (p_x, c_y) \in R_{seg}$ This is the case when each labeled pixel is associated with exactly one class.
- Multi-class per pixel Segmentation when $\exists p_x \in D, \exists c_1, c_2...c_k \in C : (p_x, c_1), (p_x, c_2), ...(p_x, c_k) \in R_{seg}$ This is the case when at least one labeled pixel is associated with more than one class.

Out of scope for version 1.0

© https://paperswithcode.com/lib/torchvision/keypoint-r-cnn

Keypoint-Annotation as specific use case:


- Poses
- Faces

....

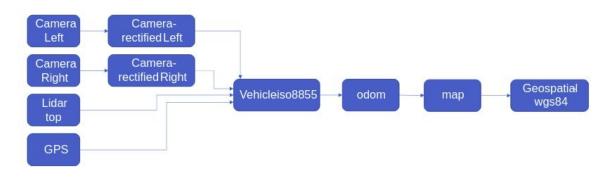
- In-cabin applications

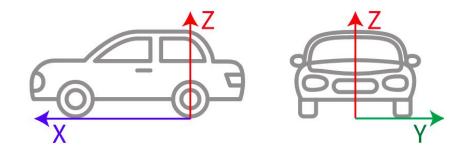
U

Out of scope for version 1.0

© https://paperswithcode.com/lib/torchvision/keypoint-r-cnn

Keypoint-Annotation as specific use case:


- Poses
- Faces
- In-cabin applications


Coordinate systems

- Often source for errors in the annotation industry
 - Mitigate errors where possible
 - Include best practises
- It is also necessary in many cases to understand how the sensor data and the labels relate to the real world
- Transformations are defined Typical transform trees are presented

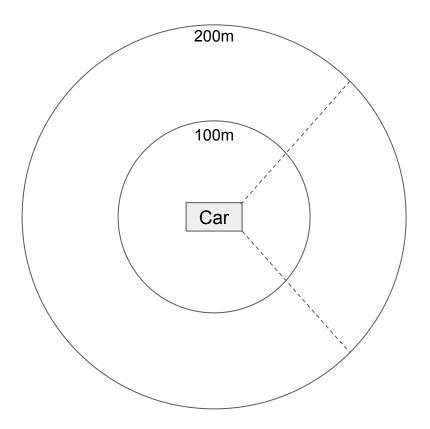
Coordinate systems

- Transform a transformation allowing the coordinates one coordinate-system to be converted into coordinates in another coordinate-system such that they represent the same point in space.
- For rotation, quaternions are used
- The standard comes with extensive explanations

Flexibility - use the standard for your specific applications

1. Extreme points

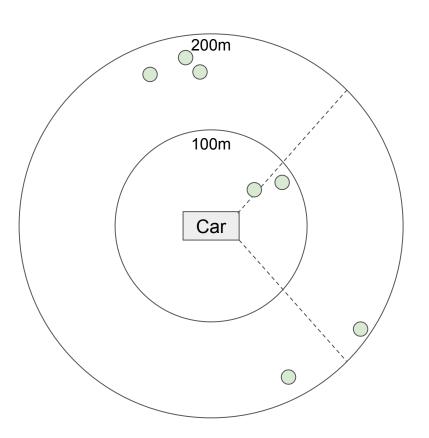
Define a polygon in addition to a bounding box


2. Customized annotations

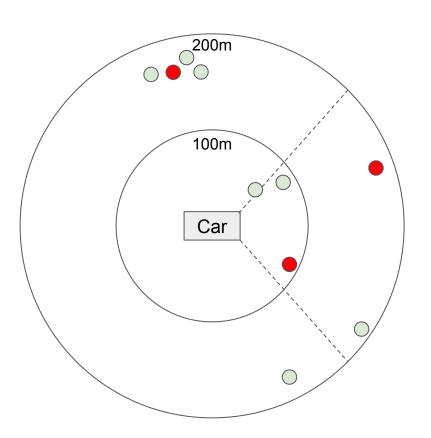
E.g. vertical lines. Define a polygon in addition to a bounding box

3. Covers camera and point cloud data

4. ...


Quality Assurance | What to measure?

UΔ


Quality Assurance

Pedestrian detected

Quality Assurance

Pedestrian detected

Pedestrian not detected

UΔ

Quality Assurance

- 1. Discussed extensively with involved parties
- 2. All design choices were made with (future) QA aspects in mind
- 3. To be implemented in the next version of OpenLabel

reference annotation ground truth annotation quality assurance confidence in data