
March 25, 2020

Justyna Zander, PhD

Measurement and success criteria



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Measurement and success criteria

Observers shall be the means to set, evaluate and grade the success while designing and executing 

OpenSCENARIO 2.0 artifacts. 

Success shall be measured based on compliance of the scenarios to the test plan, to test objectives, and 

hence to the expected behavior documented in the test specification. 

In addition, validity of the scenario shall be evaluated.



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Observers

Observers can be seen as part of the scenario. However, it is recommended to abstract them away from the 

scenario, since they provide additional insights about the design and the execution of a scenario. 

Hence, they may provide different results for various test regimes (e.g. re-simulation (replay), simulation, 

proving ground, on road testing). Often, they do not require a specific scenario to be associated with them.

Observers are divided into the following categories:

• Generic safety checkers

• Context-specific evaluators (e.g. scenario-specific evaluators, driving-mission-specific evaluators, 

scenario-quality evaluators)

• Coverage measurement models

• Context-specific Key Performance Index (KPI) collectors.



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Observer examples 

Example 1: 

English specification: Set an upper bound of 10 seconds for the car to 

stop.

Pseudo-code specification: ensure car.is_stopped() within 10.0 seconds

Example 2: 

English specification: The car must achieve all other goals without ever 

exceeding 60 mph. 

Pseudo-code specification: ensure always 

(abs(car.longitudinal_speed()) < 60.0 mph)

Example 3: 

English specification: The car must stop in ego lane only after the ego is 

moving fast enough. 

Pseudo-code specification: ensure abs(ego.longitudinal_speed()) > 50.0 

mph sometime before (car.is_stopped() and car.in_ego_lane())

Pseudocode

1. Focus on what to test

2. Abstract away how to do the search 

(outsource this job to the engine)



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Coverage and KPIs

Coverage-driven verification promises to minimize redundant effort by using "coverage" as a guide for 

directing verification toward untested areas of functionality. Coverage is defined as the percentage of 

verification objectives that have been met and is used to gauge progress of a verification project toward 

"verification closure".

KPIs serve to record non-coverage metrics and help to assess the success of the observers while executing 

a scenario. KPIs measure this success based on compliance of the scenario execution to the test plan, to 

test objectives, and hence to the expected behavior documented in the test specification.



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

KPI examples 

Example 1: 

English specification: 

Collect time-to-collision KPI for a select scenario (at the end of lane 

change). 

Pseudo-code specification: 

collect KPI (time-to-collision) at action / phase

Example 2: 

English specification: 

Collect KPI for distance between the ego car and the car ahead 

(throughout duration of the scenario) as a function of time. 

Pseudo-code specification: 

collect perception_KPI (distance) at driving

Pseudocode



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Checking for errors

• A DUT error means the DUT (ego car) did something wrong.

• The language should provide a way to indicate this, invoking a zero-time scenario, e.g., command in an 

exemplary pseudo-code such as: dut.error().

• A scenario failure means that the scenario did not happen according to its definition.

• This should be indicated by calling the zero-time scenario automatically by the execution engine.



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Methodology FLOWCHART 

SPECIFY 

SCENARIO

SPECIFY 

AV EVALUATORS 

and COVERAGE 

EVALUATORS

DERIVE VERDICT

Compare 

Ground Truth 

to Autonomous Vehicle 

Output

Evaluate 

SCENARIO QUALITY 

(effectiveness, 

diversity)

Assess scenarios 

COVERAGE 

(completeness, 

diversity)



NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Evaluator 

PRECONDITIONS: 

Detect the state | maneuver of the AV 

POSTCONDITIONS:

Evaluate the reaction of the AV

Relates to 

scenario stimuli

>>Data in params<<

Relates to expected 

outcome

>>Ground Truth<<

VERDICT


