
Pierre R. Mai

PMSF IT Consulting

ASAM OpenSCENARIO 2.0 Concepts
Language Concepts

2020-03-26



Guiding Principles
Design Guidelines for the Language



Language Concepts Guiding Principles

• Composability

The quality of being able to use standard language 

building blocks to incrementally build up more complex 

behavior in well-defined ways. This requires clear rules for 

composition and composition operators, that afford some 

level of predictable behavior post composition, while also 

allowing for interesting emergent behavior to occur, to 

ensure coverage of overall realistic traffic behavior.

• Portability

The quality of being able to use the language and 

scenarios written in it across many execution platforms 

(including simulation platforms as well as real-world test 

tracks), without undue adjustments needing to be made. 

This includes the provision of suitable fallback 

mechanisms to deal with necessary differences between 

platforms.

What we tried to keep in mind and should carry forward into 2.0 standardization

• Readability

The quality of being easy to be read and understand by a 

target audience, which includes not only domain experts, 

programmers and engineers, but also safety engineers, 

regulators, and potentially even the general public.

While this has clear implications for suitable surface 

syntax of the language, it also requires the semantics of 

the language to be well-defined, regular, and focused on 

the problem domain, and not technical implementation 

artifacts.

• Expressivity

The ability of the language to allow the concise and direct 

expression of domain subject matter. This interacts with 

readability and the declarative nature of the language, but 

also enables for example the ability to query databases of 

scenarios using language semantics rather than only 

through meta-databased queries.



Language Concepts Guiding Principles

• Migration from OpenSCENARIO 1.0

The language should support a migration path from 

OpenSCENARIO 1.0. This includes the ability to transform

OpenSCENARIO 1.0 scenarios into OpenSCENARIO 2.0 

scenarios, without necessarily requiring direct backward

compatibility.

What we tried to keep in mind and should carry forward into 2.0 standardization

• Support for Reuse

The quality of being able to reuse scenarios and parts of 

scenarios across multiple levels of abstraction, platforms, 

and use cases without undue adjustments needing to be 

made.

This comprises suitable library concepts and mechanisms 

in the language, as well as the way core language 

features are structured to foster reuse.

• Extendibility

The quality of allowing for easy extension of the 

underlying language mechanisms and domain model 

towards new requirements, including new traffic 

participants, their models and properties, compositions, 

and constraints.



Overall Structure
Necessary Mechanics of the Language



Overall Structure

• Generic set of expressions (arithmetic, relational, 

logic, …)

• Parameters and Constraints

Minimalistic set of things required for the basic operation of the language

• Current surface syntax (for examples): Python-like

• Seperate modules, one per file

• Import of other modules by name, library concept for

namespacing and location to be developed

• Remainder of module consists of type definitions and 

extensions

• Generic complement of scalar types, plus:

• Physical types, including units

• List types (i.e. ordered collections of one member

type)

• String type

• Compound types:

Structs, Actors, Scenarios, Modifiers



Type Definitions
Types in the Language, Inheritance, Extension



Compound Type Definitions
Kinds of Compound Types

• Structs

define a set of related data, similar to a class in other object-oriented languages.

• Actors

define an agent that is capable of action and whose state changes over time.

They are used to model physical entities such as cars, pedestrians and their environment. More abstract objects 

such as traffic and weather are also modeled using actors. Actor states are modeled using fields that are updated to 

reflect a ground-truth as provided by a simulator or other reporting mechanism (e.g. telemetry). Actor behavior is 

modeled using scenarios.

• Scenarios

define behavior attributed to a particular actor. Scenarios define behavior by activating other scenarios, built up from 

a library of basic scenarios describing built-in actor behavior, such as moving, accelerating, turning and so on.

• Modifiers

define changes to the behavior of the scenario invocations to which they are applied.



Compound Types Definitions

• Scenarios are declared in the context of an actor. 

While they define a namespace for their features, the 

parent actor namespace is accessible too:

• Scenarios have all the features of structs and actors, 

in addition they can invoke scenarios and modifiers.

• Invoked scenarios can be built-in or external, user-

defined ones.

• A special kind of built-in scenarios are operators, that 

create temporal relationship between the scenarios.

How to Define Compound Types

• All compound types define their own namespace

• Compound type defintions give the type a name, an 

inheritance relationship, and a set of member

definitions:

• Members can comprise (at a minimum):

• Field Declarations (incl. Parameters)

• Constraints

• Cover Defintions

• Event Declarations

• External Method Declarations



Compound Type Definitions
Inheritance and Extensions

• Simple (unconditional) inheritance

• Type extension

• Conditional inheritance



Parameters and Constraints
Controlled Abstraction and Concretization



Parameters and Constraints

• Given a scenario with n parameters, the n-

dimensional space of all possible/useful/legal n-tuples 

of concrete parameter values is the parameter 

space of the scenario.

• Such parameter spaces are expressed by parameter 

type definitions and constraints.

• Special cases of constraints are parameter ranges.

Controlled Abstraction and Concretization of Scenarios

• The rationale for parameters is to enable the 

definition and use of abstract OpenSCENARIO 

entities (such as scenarios, actors, models).

• An abstract entity, in the context of parameter-

zation, is an entity with at least one piece of 

information that is necessary to invoke or instantiate 

the entity is not yet fixed to one concrete value.

• Any such piece of information which is left open in the 

definition of the entity is called a parameter of the 

entity.

• In contrast to an abstract entity, a concrete entity is 

an entity with all information, that is necessary to 

invoke or instantiate it, unambiguously defined.



Parameters and Constraints
Controlled Abstraction and Concretization of Scenarios

• Besides the parameter space definition through 

parameter types and constraints, the choice of 

concrete values of parameters may also be 

influenced by parameter probability distributions.

• Depending on the constraints it may or may not be 

possible to choose concrete values for all parameters 

before the start of the top-level scenario execution.

• In any case, all parameters of an entity must be 

chosen at the latest when the respective entity gets 

instantiated/invoked.

• Together these concepts support:

• The definition of logical scenarios in the sense of 

the Pegasus project, which represent a multitude 

of (similar) concrete scenarios using a 

parametrized presentation.

• Ruling out useless parameter values and 

combinations thereof when generating concrete 

scenarios from an abstract (parameterized) 

definition.

• Applying stochastic methods for choosing 

parameter values, e.g. to account for real-world 

scenario likelihoods when creating test plans.

• Referencing static content of the road network

without prior knowledge of the concrete road 

network that will be used for a scenario execution.

• Modular re-use of scenarios.



Scenario Building Blocks
The Parts of a Scenario and how to Compose



Scenario Building Blocks

• Parametrized Invocation of User-Defined 

Scenarios

allowing for reusability of scenarios e.g. defining an 

overtake scenario and using them in different 

contexts

• Temporal Composition Operators

(as e.g. serial, parallel, etc ⇒ see Section 5.5.4) to 

create a new phase by composing

• atomic phases,

• invocations of other scenarios, or

• arbitrary compositions of atomic/complex phases 

and scenario invocations

• Constraints

• External Methods

with a well-defined interface (defined inputs and 

outputs) that may be written in any other 

programming language

What are Scenarios Composed of?

• Actors

The acting and reacting entities/objects of a scenario

• Actions

The basic operations that actors are able to perform. 

Actions are atomic in the sense that they are not 

further decomposable into smaller parts, i.e. they are 

atomic scenario invocations.

• Atomic Phases

Instantiations of actions of certain actors enriched by 

modifiers, consisting of:

• an Actor or Group of Actors performing it

• an Action (e.g. drive) that is to be performed

• a set of Modifiers that direct in what way the 

action is to be performed

• references to Events / Conditions that define 

when actions should occur



Modifiers
Influencing the Behavior of Particular Scenario Invocations

• Modifiers are used to influence (i.e. modify) the behavior of particular scenario invocations, including actions as well 

as composite scenarios.

• They can be seen as structured specifications for intended behavior, which are interpreted by the scenario; they do 

not consume simulated time by themselves. More precisely, they are stateless; there are no state variables 

associated with modifier instances.

• Some modifiers can only be embedded in specific scenarios. In the following example, a user-defined modifier can 

be applied to drive() only, as indicated by the of keyword in the header:

• Once defined, the modifier can be used with various values, for example:



• Scenarios can be composed out of other (sub-)scenarios using temporal composition operators, which operate on 

atomic phases

• Operators comprise serial, parallel, mixing,

selection (one of) and repetition of atomic phases

• Synchronization can be achieved using events

Temporal Composition Operators
How to Compose Scenarios using Temporal Composition



Pierre R. Mai

Owner / Director, PMSF IT Consulting

Phone: +49 8161 976 96 - 11

Email: pmai@pmsf.de


