
OpenSCENARIO 1.x

Proposal to significantly simplifying runtime implications
by Andreas Hege, Stephan Meichle

2020/02/10

Runtime Model and implication

Why do we need a runtime model?

2

The OpenSCENARIO runtime model is the

conceptual idea about what is happening with a

crafted scenario when being executed.

The 1.0 Situation

Complicated runtime implications

3

• Many rules
Must be extensively documented. Hard to be kept consistent.

• Context-sensitivity
To get the rules consistent, many special cases must be defined. Many

constraints, e.g. when an action is allowed to be used etc. => more rules.

• High amount of unnecessary complication

• When does a simulator behaves the “right way”? => simulator provider

• When is a scenario defined the “right way”? => author

The 1.0 Situation

Complicated conceptual modelling

4

• Complicated interactions between storyboard elements (e.g. actions),

entities, controllers.

• Concept of never ending actions implies never ending events, never

ending maneuvers, maneuver groups, acts, stories and scenarios.

• The same action type sometimes returns immediately and sometimes

does “never” return, depending on the action properties.

• There is no simple answer on each of the following questions.

• When does an action ends? See complex action table.

• How does the actions interact with entities and other actions?

• Is there any action allowed in the initialization phase that does not end

“immediately”? See esmini examples.

The 1.0 Situation

Expert discussions

5

The 1.x* Situation

Conceptual issues

6

• Enhancing the conceptual runtime model
Giving the authors a better and more simplified idea what happens during

execution.

• Sharpening the system boundaries
Provide an clean idea what is in the responsibility of the standard and what is

out of scope. Create abstractions and define interfaces to external systems

(with OpenSCENARIO concept group).

*x>0

The 1.x Situation

What we need.

7

We need a few very simple rules that are always

true. They should describe the concurrent

interactions between entities, actions, controllers

during runtime.

We can explore the interaction by inferring further rules from these few

rules.

The 1.x Workgroup

This is a call to volunteer

8

A subgroup in a future OpenSCENARIO 1.x

working group would be an excellent choice to

work out the details of a proposal.

FLOW AND SIMULATION

Concurrency

9

Explicit Process Abstraction

Simulation and flow.

10

• Two major processes

From the view of the standard there are two major processes. A

simulation process and a flow process.

• Synchronization
These processes are synchronized by the describing scenario.

esmini

Representation of the processes

11

FLOW PROCESS SIMULATION PROCESS

Explicit Process Abstraction

Making it explicit

12

It becomes very obvious that these two processes really exist when the

flow process is suspended (e.g. waits for a start trigger) while the

simulation process is still running (vehicles are moving).

Explicit Process Abstraction

Example

13

1. Two vehicles are moving along their lane with a constant speed.

2. Ego is moving on the right lane. Red vehicle is moving on a left lane.

3. Red vehicle runs faster and passes Ego.

4. As soon as a headway condition becomes true, the red vehicle cuts in.

5. The simulation ends after lane change.

Example

Implementation

14

1. Ego and vehicle are initialized with their position and their speed.

2. One event is implemented that waits for the headway condition (start

trigger).

3. The lane change action is performed within the event.

Runtime Interpretation

Current interpretation

15

Runtime Interpretation

Abstract process interpretation

16

Runtime Interpretation

Abstract controller interpretation

17

First step

Sketch of a simplified system

18

1. A set of orthogonal subsystems.

• Flow process and simulation process are orthogonal.

• Entity instances are orthogonal (independent). Like in real traffic.

• Lateral and longitudinal control dimensions are orthogonal.

• Controllers are orthogonal.

2. Clear system boundaries

• Runtime instances like entities, controllers, traffic signal controllers exclusively

exist in the simulation process.

• Runtime instances of storyboard elements exclusively exist in the flow process.

• Runtime instances in both processes are communicating with messages.

Runtime Interpretation

Complexity increases fast

19

Runtime Interpretation

Really Complicated

20

• Increasing numbers of entities

• Spawning parallel storyboard

elements

• Stopping storyboard elements

• Applying default behavior

The complexity does not scale

ABSTRACT CONTROLLER

MODELLING

Proposal

21

Overview

Three simple steps to simplify runtime implications

22

1. Separate actions and controllers more precisely.

2. Describe the relationships and the interactions between controllers, entities and

actions with a few simple rules that are always true.

3. Make some small semantic adjustments and provide full downward compatibility to

version 1.0.

CONTROLLERS AND ENTITIES

Simple rules for

23

Schematic Illustration

Let‘s start with controllers end entities.

24

An entity provides a lateral controlling

dimension and a longitudinal controlling

dimension.

(Orthogonal controlling dimensions).

Feels natural: The controlling dimensions of a vehicle are simplified by

regarding its steering wheel (lateral dimension) and its throttle/brake

system (longitudinal dimension)

Schematic Illustration

Controllers and entities.

25

Example: A controller instance (C1)

accesses both controlling dimensions of an

entity.

Feels natural: Control must be applied to steering and throttle/brake by a

driver or a driver assistant during movement.

Schematic Illustration

Controllers and entities.

26

An active controller is defined for

both controlling dimensions at any

time during the lifecycle of an

entity. If no explicit controller is

assigned, the default controller will

automatically step in.

Feels natural: A driver or a driver

assistant must control both dimensions,

while moving.

Schematic Illustration

Controllers and entities.

27

At any given time, only one

controller can access a controlling

dimension of an entity.

Or: a controlling dimension cannot

be accessed by multiple controller

instances at the same time.

Feels natural: Either a driver or a driver

assistant accesses a controlling

dimension exclusively

(See ADAS levels).

Schematic Illustration

Controllers and entities.

28

At any given time, a controller

instance can only access one or

two orthogonal controlling

dimensions of exactly one entity.

Feels natural: A driver and driver

assistants can access orthogonal

controlling dimensions. (Driver, driver and

cruise control, driver and lane keeping

assistant, cruise control and lane keeping

assistant)

Schematic Illustration

Controllers and entities

29

At any given time a controller

instance can only access one or

two orthogonal controlling

dimensions of exactly one entity.

Feels natural: Though drivers are able to

communicate with each other, a driver

cannot control different vehicles

=> Principle of connected cars.

Controllers

Controller abstraction.

30

Abstracting a controller as a (closed loop) controller (“Regler”).

Image: Wikipedia

Feels natural: Even a driver can be regarded as a closed loop controller

with eyes, sense of touch as sensors, legs and hands as actuators and the

brain as the “computer unit”.

https://en.wikipedia.org/wiki/Control_theory#/media/File:Feedback_loop_with_descriptions.svg
https://en.wikipedia.org/wiki/Control_theory#/media/File:Feedback_loop_with_descriptions.svg

Entities and Controllers

Summarized rules.

31

1. Controllers and entities are instances that interact during runtime. Controllers are

accessing logical controlling dimensions of an entity.

2. An entity provides a lateral controlling dimension and a longitudinal controlling

dimension. (Orthogonal controlling dimensions).

3. The simulation manages the concurrent access from the controllers to the

controlling dimensions (lateral, longitudinal) of an entity.

4. An active controller is defined for both controlling dimensions at any time during

simulation. If no explicit controller is assigned, the default controller will

automatically step in.

5. At any given time, only one controller can access a controlling dimension of an

entity.

6. At any given time a controller can only access one or two orthogonal controlling

dimensions of exactly one entity.

Controllers

Some simple rules for controllers

32

1. A control (active controller) takes simulation time >= 0.

2. An active controller always overrides other active controllers on longitudinal and/or

lateral controlling units of an entity.

3. Controllers might additionally interrupt the orthogonal controlling unit. E.g. if an

active FollowTrajectory controller is interrupted by a lane change controller on the

lateral controlling unit, it does not make sense to keep the longitudinal control of the

FollowTrajectory active. => Default Controller steps in for longitudinal control.

4. An active controller stops when

• the controller accomplished it’s final state (e.g. designated speed)

• a controller is overridden by another.

• constraints for a running controller are no longer valid (e.g. the reference entity

disappears).

• explicitly requested (Future).

CONTROLLERS AND ACTIONS

Proposal

33

Controllers and Actions

Current understanding of controllers and actions

34

1. Sometimes an entity is controlled by an action as part of the flow sometimes it is

controlled by a controller as part of the simulation process (e.g. default controller,

explicit assigned controller).

2. Even worse: Sometimes a controller controls one dimension and an action controls

the other dimension.

3. Even worse: A controller (e.g. explicit assigned controller) stops an action and an

action can stop a controller (e.g. speed action stops the default controller).

Controllers and Actions

From the view of an action

35

1. An action sometimes acts a function that takes zero simulation time. E.g.

EnvironmentAction

2. Sometimes an action behaves like a controller that takes simulation time. E.g.

SpeedAction.

3. In other cases an action behaves like a function that takes zero simulation time and

sets a controller to be executed in the simulation. E.g. AssignControllerAction.

4. Even worse: An action of the same type sometimes acts different in terms of

simulation times, depending on their settings (See complicated action table).

Controllers and Actions

From the view of an action (ongoing)

36

5. Sometimes the flow and the simulation are synchronized (if an action acts on an

entity), sometimes they run in parallel. This is not explicitly modeled but it is implicitly

depending on whether an action or a controller is acting on an entity and/or whether

an action returns immediately or not.

6. This gets extremely complicated and incomprehensive when the flow spawns parallel

branches (e.g. parallel events, executing actions).

7. Even more complicated when actions operate on different dimensions.

8. Even more complicated when regarding nested storyboard elements in the flow.

(Storys own nested acts, acts own nested maneuver groups, maneuver groups own

nested maneuvers, maneuvers own nested events, events own nested actions)

It is almost impossible for an author to scale from

simple scenarios to more complex scenarios.

Controllers in 1.0

Just a statement

37

Controllers have been left as semantically empty. A controller owns only properties as

attributes and parameter declarations to parameterize the properties. The semantics of

the properties are out of scope of the standard.

A SIMPLIFIED CONCEPTUAL MODEL

Proposal

38

A Simplified Model

A few rules solve many problems

39

1. An entity is always controlled by controllers (see previous rules). It is never

controlled by an action.

2. An action sends messages to runtime instances like entities and their controllers,

traffic signal controllers, the global instance etc. . Actions do not act on runtime

instances and return always immediately.

3. The “flow” and the “simulation” are explicitly synchronized not implicitly.

Synchronizing Actions and Controllers

Default behavior 1.x

40

The action immediately returns after setting the controller:

<SpeedAction synchronize="false">

<SpeedActionDynamics dynamicsShape="step" value="2" dynamicsDimension="time"/>

<SpeedActionTarget>

<AbsoluteTargetSpeed value="20"/>

</SpeedActionTarget>

</SpeedAction>

Synchronizing Actions and Controllers

A fully backward compatible solution to 1.0

41

An action that sets a controller is able to stop the flow until the controller is stopped.

<SpeedAction synchronize=„true">

<SpeedActionDynamics dynamicsShape="step" value="2" dynamicsDimension="time"/>

<SpeedActionTarget>

<AbsoluteTargetSpeed value="20"/>

</SpeedActionTarget>

</SpeedAction>

With synchronized=true as the default, this is the behavior from 1.0

<SpeedAction>

<SpeedActionDynamics dynamicsShape="step" value="2" dynamicsDimension="time"/>

<SpeedActionTarget>

<AbsoluteTargetSpeed value="20"/>

</SpeedActionTarget>

</SpeedAction>

Problems solved

Answers given by the conceptual model

42

1. The initialization phase does not take simulation time by definition.

2. There will be no complicated action table any more. Only some small and generic

rules for controllers (whether they take lateral, longitudinal or both controlling

dimensions. Whether they give up control on the opposite control dimension when

stopped).

3. Controller/Action concept can easily and immediately be extended to other

controllers like traffic light controllers and traffic concepts (traffic source as an

indepedent controller that creates vehicle, swarm as a controller for a swarm of

vehicles).

4. Controller concept is also valid for pedestrians.

5. Controller concept is valid for driver in the loop. Take over control of

lateral/longitudinal controlling dimension. Give up the control.

6. There are clear answers when a storyboard element ends.

Problems solved

Answers given by the conceptual model

43

7. The concepts are cleanly separated. On one hand the concept of storyboard

elements flow (including actions), that is considered very stable over

OpenSCENARIO versions. And on the other hand the expandable concept of

controllers that is expected to be very volatile during the next years of ADAS

development. (many different controllers, new controllers).

8. There is a one to one relation between an entities controlling dimension and a

controller. An entity has an active controller at any time. There is no comparable

strong relation between an entity and an action for 1.0.

9. An entity is always controlled by one or two controllers. It is never controlled by an

action. In 1.0 an entity is sometimes controlled by action and sometimes controlled

by a controller (e.g. by the default controller, or explicit controller).

10. An action can never be overridden by other actions. This solves a lot of conflicts by

definition.

Problems solved

Answers given by the conceptual model

44

11. The flow of storyboard elements is in line with the complex but well known

characteristics of concurrent systems. Splitting one process in many parallel

processes. Synchronizing concurrent access to ressources. Joining parallel

processes into a single one.

12. An action does not necessarily effect a controller or a lateral or longitudinal

controlling dimension. There is no one to one relation between action and controller.

13. An action does never take simulation time. A controller does always take simulation

time. An action does not behave like a controller at one time, and like an immediate

returning action the other time.

14. An active controller can exist beyond the limits of a storyboard element by definition.

Not implicitly by setting a controller.

15. No special cases that some actions activate a control and some others applying

control. „Simulation“ and the „flow“ run independently.

ADDITIONAL SLIDES

45

Conflicts

Potential conflicts still exist

46

1. Conflicts exist in 1.0: If two contradicting actions that return immediately are applied

at the same time (e.g. Two contradicting EnvironmentActions).

2. But: In 1.x, conflict resolution is exclusively part of the flow and not part of the

simulation.

3. For 1.x: In the simulation there are clear rules by definition: Last action wins. E.g.

Last EnvironmentAction wins. Latest SpeedAction provides the controller.

