
München

Gil Amid
Foretellix Ltd

OpenSCENARIO 2.0 Concept Project
Status and next steps.

18. März 2020

Agenda

Background

Current Status

Technical overview

Roadmap OpenSCENARIO

A convergence of the two versions will require further releases of OpenSCENARIO,
which will be developed in subsequent OpenSCENARIO 1.x projects.

Roadmap OpenSCENARIO

A convergence of the two versions will require further releases of OpenSCENARIO,
which will be developed in subsequent OpenSCENARIO 1.x projects.

Motivation

• AV development and certification requires massive usage of scenario driven simulation.

Exhaustive simulation is a MUST HAVE for development and qualification of AD and Autonomous

driving systems

• OpenSCENARIO 1.x just completed its transfer to ASAM, and is in its stabilization phase.

• during various workshop it became clear there are additional needs, which may not be met by

evolution of the current format.

• OSC Overall Goal: A standard with all the required features to enable testing and validation of ADAS

systems and autonomous vehicles.

• OpenSCENARIO 2.0 should serve as the format and mechanism to supply dynamic content and

functional behavior to all testing and execution platforms, for all driving scenarios ranging from simple

motor-way interactions to long-running, complex inner-city traffic scenarios.

Technical Content

• OpenSCENARIO 2.0 needs to support:

• Definition of tests and scenarios for the full development process of

autonomous vehicles

• the full complexity of real-world scenarios, including complex inner-

city traffic.

• Required use cases: span from pure software-based simulation, through

SIL, HIL, VIL hybrid testing models, up to test tracks and street driving.

• Concept project focus:

• Focus on the set of 12 features as defined in the proposal work shop

(early 2019)

• Define architecture for the main scenario models, and interface to

other required models (e.g. Environment, Driver, Traffic)

• Address varying levels of requirements for parametrization, accuracy

• Address different use cases of scenarios.

General Requirements

• The requirements span over many use cases, and many

needs.

Current Status

Key Messages -Concept Project Completed

• Project included ~100 engineers from ~50 companies. (about 50%

active – attending f2fs)

• Concept Document completed in February, approved by ASAM TSC

• Concept Document is released on ASAM web site.

Link: https://releases.asam.net/openscenario-2-0-concept/ASAM_OpenSCENARIO_2-0_Concepts.html

• Based on the considerations of the concept group, OpenSCENARIO

2.0 is proposed to be founded on the concept of a domain-specific

language, that should support all levels of scenario description, from

the very abstract to the very concrete in a suitable way.

Key messages – next steps

• The ASAM OpenSCENARIO 2.0 project is aimed at taking the concepts specified in
the OpenSCENARIO concept document and continue and develop the next
generation of the OpenSCENARIO standard: OpenSCENARIO 2.0.

• A rough estimate is that the development of such a standard can be achieved
within a year, aiming at release in Q2 of 2021.

• OSC 1.x provides a very concrete scenario description format, usable now, that
will be directly compatible with the 2.0 project. OpenSCENARIO 2.0 provides a
Domain Specific Language (DSL) and aims to significantly extend the domain
addressed by 1.x to cover further use cases for AD development. The two groups
will also jointly develop a migration mechanism that grants unchanged run-time
behavior for OpenSCENARIO 1.x scenarios converted to OpenSCENARIO 2.0.

Next steps

• A proposal workshop (virtual) is set for Mar-26

• Details and registration: https://www.asam.net/conferences-

events/detail/asam-openscenario-v20/

Technical overview

Use Cases and User Stories

• The concept project constructed and analyzed more than 40 use cases/user

stories , covering various usage mode by test engineers, content model and

software developers, system and safety engineers, regulators and type

approval authorities (e.g. NHTSA test scenarios)

• These serve two goals:

• the scope of the project is clear - both to the project participants and to

anyone not directly involved in the initial development

• the requirements for the DSL can be easily analysed and extended based

on further use cases in the future.

User Stories - Examples

• User stories are phrased from an end-user perspective, who will be interacting with

the tools and processes required to define, implement and consume results from

test scenarios

• Few Examples:
• As a test engineer, I can build and run tests as similarly as possible on different execution platforms.

• As an auditor/regulator, I can compare the outcome of different execution platforms when they have the

same OpenSCENARIO input.

• As an existing tool provider or consumer, I can migrate information from previous versions of

OpenSCENARIO into OpenSCENARIO 2.0

• As a development project lead, I can create scenarios on an abstract level to document the functional

behavior for legal reasons.

• As a SOTIF safety engineer and/or V&V engineer, AV developer, scenario creator, I can use

OpenSCENARIO 2.0 to discover scenarios that are going to uncover safety hazards. This refer to SOTIF

and safety hazards that can be present even if the system is functioning as designed, without a

malfunction.

Use Cases

• The intent of OpenScenario 2.0 is to cover use cases at varying levels of autonomy.

Hence, they should represent an adequate level of complexity including maneuvers

and ODD features that are not accounted for otherwise

• Use Cases were developed using a template including

USE CASES

• Very Simple Example: Scenario definition for entering a roundabout , Concrete, left turn

DOMAIN MODEL & Entities

• A domain model foundation was developed, defining the key entities needed, and their

relations.

• Further development is expected in the standardization project.

• In order to ensure sync with OpenSCENARIO 1.0, a UML diagram visualizing actions

defined in OpenSCENARIO 1.0 is included in the document.

• High level Domain Model:

OSC 2.0 - DOMAIN SPECIFIC LANGUAGE

• The foundational concept of OpenSCENARIO 2.0 is to establish a domain specific language of a

declarative nature.

• A declarative language describes what should happen on scenario execution (including the

required parameterization/variation), rather than how to do it.

• A declarative language can also have a dual interpretation, i.e. provide a single scenario

description which can be used to describe both how to make it and how to monitor that

it indeed happened. (This is important if we want to condition some operation on the fact that

some other scenario has happened before, without having to describe in detail how to cause that

scenario.)

• Foretellix’s M-SDL language is used to supply examples in the concept document, and in next

slides. Reference manual available on ASAM site: https://releases.asam.net/openscenario-2-0-

concept/M-SDL_LRM_OS.pdf

19

DSL - dual interpretation

• Each scenario definition has two interpretations:
• Active: Make this scenario happen
• Passive: Monitor whether it happened

• Why: Because scenarios sometimes don’t happen as planned
• We don’t want to take credit if it did not really happen
• We want to collect coverage according to actual values

• Why: Because we want to monitor scenarios we did not plan
• E.g. from recorded drone videos or from the AV’s sensors
• E.g. from simulations not controlled by M-SDL
• We want to collect coverage on which scenarios happened,

and with which parameters

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)
position([10..20]m, behind: v2, at: start)

B: v1.drive(p)
C: v1.drive(p) with:

lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end)

V1 V2

19

20

DSL concepts

• A scenario describes behavior over time
• Scenarios are defined via a scenario definition, and invoked (activated, called) via a scenario

invocation

• Modifiers can be used to modify (influence) scenario invocations

• There are three kinds of scenarios / maneuvers etc.
• Scenario operators (e.g. serial) are used to compose other scenarios

• Atomic maneuvers (e.g. drive) define the basic capabilities of actors

• User-defined scenarios (e.g. overtake)

• Scenario definitions have parameters with types
• Parameters types can be time or speed or even car (i.e. a reference to an actor)

• Parameter values are set when scenarios are invoked

• The final value will be set according to the type and the constraints applied

20

21

DSL concepts (continued)

• Actors are the “players” in a scenario (e.g. vehicles, people etc.)
• A scenario can define the behavior of a single actor or orchestrate the behavior of multiple actors

• An actor can also represent a group of other actors, like traffic and car_group

• Constraints / modifiers modify (influence) behavior
• keep() defines a constraint which influences one or more parameters

• modifiers influence scenario behavior even more generally (e.g. determine speeds, paths etc.)

• Coverage definitions define values to be collected for coverage analysis
• cover() defines which values to collect, and which

21

22

Constraints, randomization and coverage

• Constraints are used to
• Narrow down parameter values
• Connect values of multiple parameters

• When generating a test, for any parameter not assigned a value
• The system will pick a random value while obeying the constraints
• By default it will use a flat random distribution, but you can request any other distribution function

• Use modifiers to influence the scenario’s dynamics
• Like speed, position, where on the map it should happen etc.

• You can go from very concrete to very abstract

• Use coverage to collect values for multi-run analysis

22

2323

Example: cut_in_and_slow

A
V

scenario dut.cut_in_and_slow:

car1: car # The other car
side: av_left_right # A side: left or right
path: path # A path in the map
path_min_lanes(path, 2) # Path should have at least two lanes

do serial:
get_ahead: parallel(duration: in [1..5]s):

dut.car.drive(path) with:
speed([30..70]kph)

car1.drive(path, adjust: TRUE) with:
position([5..100]m, behind: dut.car,at: start)
position([5..15]m, ahead_of: dut.car, at: end)

A
V

change_lane: parallel(duration: in [2..5]s):
dut.car.drive(path)
car1.drive(path) with:

lane(side_of: dut.car, side: side, at: start)
lane(same_as: dut.car, at: end)

A
V

slow: parallel(duration: in [1..5]s):
dut.car.drive(path)
car1.drive(path) with:

speed_change(-[10..15]kph)

A
V

2424

Using modifiers to control scenario dynamics

● Modifiers are like constraints but more general. Examples:

● Control movements via movement modifiers

 v1 drives 10..20 kph faster than v2:

v1.drive() with: speed([10..20]kph, faster_than: v2)

● Control the scenario’s location via path modifiers

 Path (road) p should have at least 2 lanes:

path_min_lanes(p, 2)

● Control synchronization between events

 Sync these two events to within -1..1 second of each other:

synchronize(phase_a.end, phase_b.start, [-1..1]s)

● You can use any number of modifiers in the same invocation

 E.g. to express the complex situation on the right

v3.drive(p) with:
lane(right_of: v1)
speed([7..15]kph, faster_than: v1)
position([20..70]m, ahead_of: v1)
position([10..30]m, ahead_of: v2)
lane(same_as: v2)
lateral([10..25]cm, left_of: v2)

V1

V2 V3

2525

Scenario invocation syntax

● Scenario name

– scenario operators
serial: … parallel: … first_of: … one_of: … mix: … repeat: …

– atomic scenarios (actions)
drive() … walk() … wait …

– user-defined scenarios
overtake() … cut_in() …

● Scenario invocation

[label:] [path.]name(parameter, …) [with: modifier …]

– label is optional
d: drive(…) … or drive(…) …

– path is optional
dut.car.drive(…) … or drive(…) …

– parameter can be by name or by position
drive(path) or drive(path)

– modifier is similar to scenario invocation
speed(5 kmh, faster_than: car1)

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path
keep(v1.color != green)

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)
position([10..20]m, behind: v2, at: start)

B: v1.drive(p)
C: v1.drive(p) with:

lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end)

import sumo_config.sdl # Execution platform
import lane_change_scenarios.sdl # Library

extend top.main: # Extend the predefined main
set_map(“some_map.xodr”) # Map to use in test
do overtake(v2: dut.car)

V1 V2

2626

Composition: Writing a full scenario

● Here is the full overtake scenario

● You can then compose this scenario using e.g. serial

V1 V2

A B C

overtake

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
position([10..20]m, behind: v2, at: start)
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)

B: v1.drive(p) with:
position([1..10]m, ahead_of: v2, at: end)

C: v1.drive(p) with:
lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end) Time

v1.drive v1.drive

v2.drive

v1.drive

A B C

scenario overtake_serial
car_a: car
car_b: car
do serial:

overtake(v1: car_a, v2: dut.car)
overtake(v1: car_b, v2: dut.car) Time

overtake overtake

2727

Example: Writing a concrete scenario

• So far, we wrote an abstract scenario, then constrained it “from above”

• We can write a concrete scenario “from scratch”

scenario traffic.overtake:
v1: car
…
do parallel(duration: [3..20]s):

… position([10..20]m, behind: v2, at: start)

scenario traffic.concrete_overtake:
v1: car:
keep(v1.color == green)
keep(v1.category == truck)
…
do parallel(duration: 7second):

… position(10.5m, behind: v2, at: start)
… speed(18.7kph) # Note that speed was not

mentioned

Some lines from the original abstract

scenario: Note the ranges

Same lines if we want to write

a concrete scenario from the start

2828

Example: Driver-in-the-loop

scenario dut.DIL_multi_near_hit:
how_long: time # How long to run it

do run_time(duration: how_long):
dut.car.drive(duration: how_long) # Drive the dut
repeat():

wait_time([5..20]s) # Let him relax a bit
near_hit() # Plan the next near-hit

Time

normal drive near hit normal drive near hit …

scenario dut.near_hit:
do one_of():

turn_right_plus(v2: dut)
overtake(v2: dut)
car_ignoring_red_light()
…

This scenario will cause a random

near hit situation

This scenario will repeatedly wait some

seconds and then plan and execute

another random near-hit

2929

Concrete to abstract

v2

v1

Time

straight

A (to left) B (straight) C (to right)

V1 V2

scenario traffic.overtake_concrete:
v1: car with(category: sedan, color: black)
p: path
path_explicit(p,[point(“15”,30m), point(“95”,1.5m), …])

do parallel(duration: 10s):
dut.car.drive(p) with:

lane(2)
speed(50kph)

serial:
A: v1.drive(p, duration: 3s) with:

speed(70kph)
lane(2, at: start)
lane(1, at: end)
position(15m, behind: dut.car, at: start)
position(1m, ahead_of: dut.car, at: end)

B: v1.drive(p, duration: 4s) with:
position(5m, ahead_of: dut.car, at: end)

C: v1.drive(p, duration: 3s) with:
speed(80kph)
lane(2, at: end)
position(10m, ahead_of: dut.car, at: end)

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)
position([10..20]m, behind: v2, at: start)

B: v1.drive(p)
C: v1.drive(p) with:

lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end)

scenario traffic.overtake_dut
do overtake(v2: dut.car) with:

keep(it.A.duration == 3s)

scenario traffic.overtake_serial
car_a: car
car_b: car
do serial:

overtake(v1: car_a, v2: dut.car)
overtake(v1: car_b, v2: dut.car)

scenario traffic.overtake_repeat
do repeat(count: 10):

wait_time([10..20]s)
overtake_serial

This is a more abstract

version of overtake

This is a very concrete

version of overtake

This scenario invokes
overtake with some

parameters

This scenario does two
overtakes serially

This scenario repeats
overake_serial 10 times

3030

Multiple, independent movement constraints

Phase A Phase B

scenario traffic.multi_car:
v1: car # The first car
v2: car # The second car
v3: car # The third car
p: path

do serial:
A: parallel(duration: [3..20]s):

v1.drive(p) with: …
v2.drive(p) with: …
v3.drive(p) with:

lane(right_of: v1)
speed([7..15]kph, faster_than: v1)
position([20..70]m, ahead_of: v1)
position([10..30]m, ahead_of: v2)
lane(same_as: v2)
lateral([10..25]cm, left_of: v2, measured_by: center_to_center)

B: parallel(duration: [3..20]s):
v1.drive(p) with: …
v2.drive(p) with: …
v3.drive(p) with: …

This is phase A
Note the relations (speed, position,

lateral offset etc.)
between v3 and the other cars

Here is how you say that. Note that we

need here six movement constraints

(modifiers), each with its own set of

parameters.

V1

V2 V3

3131

Using event-based synchronization

scenario traffic.multi_car:
v1: car # The first car
v2: car # The second car
p: path

event e1 is map.reach_position(v2, point1)
event e2 is map.reach_speed(v2, 40kph)
…

do parallel:
v1_part: serial:

wait @e1
v1.drive(p) with:

speed(…)
position(…)
on @e2: end()

v1.drive(p) with:
speed(…)
position(…)
on @e3: end()

v2_part: serial:
v2.drive(p) with:

speed(…)
position(…)
on @e4: end()

v2.drive(p) with:
speed(…)
position(…)
on (v1.distance_to(point2) < 7): end()

v2.drive(p) with:
speed(…)
position(…)

…

scenario traffic.multi_car_plus
do serial:

multi_car(v2: dut.car)
if (dut.car.distance_to(point3) < 10):

repeat(count: 3):
overtake_serial

Define the whole scenario as
“parallel of serials”

End each step of the serial
upon some event

Events represent moments in
time. Can be defined using any

condition(or other events)

Can also specify
the condition inline

Note that this whole parallel-of-serials can still be
a lego brick in something bigger

e3

v1_part

v2_part

Time

drive drive

drive drive drive

e1 e2e4 (<condition>
)

parallel
starts

parallel of serials

32

Using coverage

• Coverage is used to analyze “what we did so far”
• Which part of the “scenario space” have we exercised our AV in?

• Use cover() to specify what items to sample, when to sample them, how to split them into buckets etc.

• E.g. cover(side) means “sample the ‘side’ parameter at the end of the overake scenario

• Note: Coverage can be specified and collected over many scenario objects and properties

• In-line or concurrently, possibly using procedural modeling code.

extend traffic.overtake:

cover(side)
cover(v1.color, name: other_car_color)
cover(min_ttc(v1, v2), name: min_time_to_collision,

unit: millisecond, range: [0..3000], every: 100)

These coverage items will be
sampled whenever this scenario
happens (for offline, aggregate

analysis)

32

Thank you for your attention!

Gil Amid

Foretellix Ltd

Phone: +972-58-4347475

Email:gil.amid@Foretellix.com

