
1

Munich

Dr.-Ing. Ludwig Friedmann

Solution Architect Simulation Autonomous Driving, BMW AG

ASAM OpenSCENARIO 1.0.0
Release Presentation, Technical Overview &

Scenario Creation

18.03.2020

2

Release Presentation

Introduction

Motivation

New Features

Other Changes

Backward-Compatibility

1

2

3

4

5

Relation to Other Standards6

Deliverables7

Outlook8

3

Introduction

OpenSCENARIO is used in driving simulation and in virtual development, test and

validation of driving assistance functions, automated and autonomous driving.

Within these use cases, OpenSCENARIO describes the dynamic content of the world, i.e.

the entities acting on or interacting with the road network. OpenSCENARIO does not

describe the road network, road infrastructure or road surface.

OpenSCENARIO was transferred to ASAM by an industry consortium in late 2018. It

evolved to the ASAM standard OpenSCENARIO 1.0.0 within the ASAM OpenSCENARIO

Transfer project.

4

Motivation

Scenarios are essential for testing, validating and certifying the safety of driver assistance

systems and autonomous driving cars. The industry, certification agencies and government

authorities jointly work on the definition of scenario databases, which can be used to test and

validate the safe operation of such systems.

OpenSCENARIO supports this endeavor by enabling the exchange and usability of scenarios

in various simulation applications. With the help of this standardization effort, large numbers

of critical situations can be run across various simulators. Thus, compared to road testing in

real traffic, the amount of driven test kilometers in field tests can be significantly reduced.

The overall goal of ASAM OpenSCENARIO 1.0.0 was to create a standardized scenario

description format which provides a quality- and completeness-level that is expected from a

public standard and from ASAM members.

5

New Features

Creation of a Data Model and Derived Schema Files

• UML Data Model

• XML Schema Files

Creation of Specification Documents

• Specification Programmers Reference Guide

• Specification User Guide

Creation of Comprehensive Examples, Evaluation of Deficits and Potential Improvements

• 9 Examples

• 44 Bugzilla Items

6

Other Changes

Clarification and Technical Improvement

• Coordinate Systems

• Storyboarding and StoryboardElements (state machine, transitions and runtime behavior)

• Parameters and Catalogs

• Triggers, Conditions and ConditionEdges

• TrafficActions

• TrafficSinkAction

• TrafficSourceAction

• TrafficSwarmAction

• RoutingActions

• AssignRouteAction

• FollowTrajectoryAction

• FollowRouteAction

• SynchronizeAction

• Routes and Trajectories

• …

7

Backward Compatibility

ASAM OpenSCENARIO 1.0.0 and the predecessor version 0.9.1 differ in terms of

semantics, naming and structure. As consequence, version 1.0.0 cannot provide backward

compatibility to version 0.9.1.

Instead, OpenSCENARIO 1.0.0 provides an XSLT migration script to transform valid files of

the earlier version 0.9.1 into valid OpenSCENARIO 1.0.0 files. Within this script, each

element of the 0.9.1 version has a template that transforms and reshapes the element to

OpenSCENARIO 1.0.0.

8

Relation to Other Standards

ASAM OpenDRIVE

In order to use semantic road network information within ASAM OpenSCENARIO, the road network description ASAM

OpenDRIVE can be referenced.

ASAM OpenCRG

Road surface profiles defined by OpenCRG can be referenced from the before mentioned OpenDRIVE road network

description and thus complement the two other standards.

9

Deliverables

Documents

• Specification Programmers Reference Guide

• Specification User Guide

Data Model and Supplementary Files

• UML Data Model

• UML Modeling Rules

• HTML Documentation

• XML Schema File

• Examples

• Migration Script (0.9.1 –> 1.0.0)

• List of Analyzed Deficits and Proposed Improvements

10

Outlook

The Proposal Workshop for a follow-up “ASAM OpenSCENARIO 1.x” project will

take place on March 25th (https://www.asam.net/project-detail/asam-openscenario-v1x/).

Goals of the ASAM OpenSCENARIO 1.x project:

• Completion of tasks that could not be completed within ASAM OpenSCENARIO 1.0.0

• Support for users and implementers of OpenSCENARIO 1.0.0 and 1.x

• Close collaboration with proposed ASAM OpenSCENARIO 2.0 project

https://www.asam.net/project-detail/asam-openscenario-v1x/

11

ASAM OpenSCENARIO 1.0.0

Technical Overview

12

Technical Overview

Fundamental Concepts

Road Networks and 3D Models

Coordinate System Types

Coordinate Systems

Entities

1

2

3

4

5

Storyboard6

Actions7

Global Actions8

Private Actions9

Controllers10

Routes11

Trajectories12

Traffic Simulation13

13

Fundamental Concepts

1. Road Network is populated by Entities (Vehicles, Pedestrians and MiscObjects, interaction defined by the

Storyboard).

2. Storyboard contains at least one Story (structuring Acts, ManeuverGroups, Maneuvers, Events and Actions)

3. Actions are triggered by Conditions in Triggers (Triggers also start Acts and Events or stop Acts and the

Storyboard)

4. Catalogs and Parameters allow re-use of Scenario elements

14

Road Networks and 3D Models

OpenSCENARIO uses a reference to the logical RoadNetwork description (e.g.

an OpenDRIVE file) to describe the behavior of road users.

OpenSCENARIO references RoadNetwork items using the names allocated by their

own file format (e.g. to locate and position Entities, apply dynamic behavior to road

infrastructure).

Examples for RoadNetwork items referenced by OpenSCENARIO are:

• Individual road

• Lane within a road

• Traffic signal

• Traffic signal controller

3D models can be referenced by the RoadNetwork for geometric and visual

representation of the environment. 3D models for Entities may be referenced by

the simulator based on Entity naming.

15

Coordinate System Types

In OpenSCENARIO, two coordinate system types are used:

• Right handed Cartesian coordinate systems, compliant with ISO 8855:2011 definition. Orientation is expressed by

heading(yaw)-pitch-roll sequence.

• Right handed, road based coordinate systems defined by coordinate axes associated with the reference line of

the road (s-axis) and the direction orthogonal to it (t-axis).

16

Coordinate Systems and Positioning/Localization

Coordinate Systems

The afore mentioned coordinate system types are referenced to create the following coordinate systems

• World coordinate system (Xw, Yw, Zw)

• Road coordinate system (s, t)

• Vehicle coordinate system (Xv, Yv, Zv)

• Pedestrian / MiscObject coordinate system (Xp/m , Yp/m , Zp/m)

Positioning/Localization

OpenSCENARIO provides various ways to position or localize Entities:

• Absolute/relative in the World coordinate system

• Relative to another Entity

• Absolute/relative in the Road coordinate system

• Absolute/relative in the Lane coordinate system

• Relative to a Route

17

Entities

Entities are objects within a scenario that can (but do not have to)

change their location dynamically over time.

Entities can be Vehicles, Pedestrians or MiscObjects:

• Obstacle

• Pole

• Tree

• Vegetation

• Barrier

• …

Actions can change the state of an Entity, e.g. its position, speed,

or Controller (user defined or default).

The state of an Entity can be queried to trigger an Action.

EntitySelections are used to reference groups of Entities.

18

Storyboard

The Storyboard is structuring the scenario as a

storybook for the dynamic content of the virtual world:

• Init is used as initialization phase to set initial

conditions of the scenario.

• Stories allow grouping aspects into a higher-level

hierarchy to provide structure in large scenarios.

• Stories contain Acts that define conditional groups

of Actions.

• Triggers (i.e. startTriggers and stopTriggers)

control the execution of Acts.

• ManeuverGroups are assigning Entities as Actors

to Maneuvers.

• Maneuvers are containers for Events that share a

common scope.

• Events control the simulated world or corresponding

Entities. This is achieved through triggering Actions,

given user-defined Conditions.

Init

Set up the scenario

InitActions

GlobalAction

(0+)

e.g. set weather

UserDefinedAction (0+)

e.g. change simulator settings

Private (0+)

e.g. position a vehicle

Story (1+)

An independent section of a scenario

Act (1+)

Define a conditional group of actions

StartTrigger

Condition for act to start

ManeuverGroup (1+)

Who is doing what? Link Actors to Maneuver

Actors

Which entities are affected?

EntityRef (0+)

CatalogReference (0+)

Import reusable content

Maneuver (0+)

Group a collection of events

Event (1+)

Apply starting conditions to actions

StartTrigger

Action (1+)

GlobalAction (xor)

e.g. change weather

UserDefinedAction (xor)

e.g. change simulator

settings

PrivateAction (xor)

e.g. move a vehicle

StopTrigger

StopTrigger (optional)

Condition for act to stop

19

Actions

Actions serve to create or modify dynamic elements of a scenario, e.g. change in lateral dynamics of a vehicle or

change of the time of day. Actions are divided in three categories:

• PrivateActions

• GlobalActions

• UserDefinedActions

In the Init phase of a scenario, Actions are responsible for setting up initial states of dynamic objects, environment,

infrastructure, etc.

In any later phase of the scenario Actions are executed when Events are triggered.

20

Global Actions

GlobalActions are used to set or modify non-entity related quantities:

• EnvironmentAction Setting Weather, RoadConditions and TimeofDay.

• EntityAction Removing or adding instances of Entity.

• ParameterAction Setting/modifying values of parameters.

• InfrastructureAction Setting/modifying the state of a traffic signal or a traffic signal controller phase.

• TrafficAction Populating ambient traffic by defining sources, sinks and swarms.

21

Private Actions

PrivateActions are assigned to Entities to describe motion, position, and visibility:

• LongitudinalActions Controlling speed or distance to a target (SpeedAction, LongitudinalDistanceAction).

• LateralActions Targeting a lateral position within a lane (LaneChangeAction, LaneOffsetAction).

• VisibilityAction Enabling/disabling detectability/visibility of Entities.

• SynchronizeAction Controlling an Entity to arrive at a reference position and speed.

• ActivateControllerAction (De-)activate a Controller model.

• ControllerAction Override Controller signals, e.g. apply the brakes.

• TeleportAction Defining a teleport destination for an Entity.

• RoutingAction Specifying the Route or Trajectory that an Entity should follow (AssignRouteAction,

AcquirePositionAction, FollowTrajectoryAction).

22

Controllers

Controllers can be assigned to Entities of type Vehicle or Pedestrian. They are activated for a given domain (i.e.

longitudinal or lateral) using the ActivateControllerAction and may be internal (part of the simulator) or external (defined

in another file).

Use cases for controllers comprise:

• Specifying that a vehicle should be controlled by the system under test.

• Defining ”smart agent” behavior, i.e. have the Controller take intelligent decisions in response to the road network

and/or other vehicles.

• Assigning a vehicle to direct human control.

23

Routes

Routes are used to navigate Entities through the RoadNetwork based on lists of Waypoints.

Waypoints are linked in order, resulting in directional Routes. An Entity’s movement between

Waypoints is left to the simulator using the RouteStrategy as constraint.

Unambiguous Routes can be specified using a

sufficient number of Waypoints, resulting in a

one-dimensional coordinate system that enables

unambiguous localization and positioning.

Routes may be assigned to Entities using

AssignRouteAction or AcquirePositionAction.

While the former directly assigns a route to the

corresponding Entity, the latter is used to create a

route “on the fly” by specifying a target destination.

24

Trajectories

Trajectories define mathematical precise paths for Entity motion. They can be specified using one of the following

mathematical shapes:

• Polyline (a concatenation of simple line segments across a set of vertices)

• Clothoid (Euler spiral, i.e. a curve with linearly increasing curvature)

• Non-Uniform Rational B-Splines (NURBS) of arbitrary order

NURBS can express most relevant paths either directly, or with arbitrary approximation. They directly support the

expression of conic sections (such as circles and ellipses).

Trajectories can be specified using the three positional dimensions. Three rotational dimensions can be added to

specify Entity orientation. An optional time dimension allows for the specification of an Entity’s velocity.

Whilst Trajectories provide mathematically precise paths, Entities can follow these paths either directly or use it as

guidance for their controller (as defined in the FollowTrajectoryAction).

25

Traffic Simulation

Besides the definition of deterministic Entity behavior, OpenSCENARIO provides ways to define stochastic or not

precisely defined behavior for traffic simulation. This can be used to create macroscopic traffic within a scenario or

around Entities.

For this purpose, traffic agents can be defined using TrafficActions. With the help of these actions, the following

aspects of traffic simulation can be specified:

• Parameterization of traffic sources (TrafficSinkAction)

• Parameterization of traffic sinks (TrafficSinkAction)

• Parametrization of traffic swarms (TrafficSwarmAction)

TrafficActions do not specify which maneuvers will be executed by the traffic agents.

This task is up to the implementation of the simulator.

26

ASAM OpenSCENARIO 1.0.0

Scenario Creation

27

Scenario Creation

Example Scenario

Init

Story

Acts

ManeuverGroups

1

2

3

4

5

Maneuvers6

Events7

28

Example Scenario

The Ego vehicle, an externally controlled vehicle, is driving along an urban road approaching a junction on the offside.

Ego is being followed by two vehicles, C1 and C2. A third vehicle (C3) is waiting to turn right at the junction.

As Ego approaches the junction, C1 and C2 start to overtake. Slightly later, C3 starts to turn right, which prompts C1

and C2 to make an emergency stop.

Initial positions of the vehicles:

29

Init

The XML example to the right shows an Action which

positions Ego using global coordinates at the Init phase.

In this phase of the scenario, Actions do not require Triggers

to be executed.

Similar Actions (not shown) are used to specify

speeds and positions for the other vehicles.

<Storyboard>

<Init>

<Actions>

<Private entityRef = "Ego">

<PrivateAction>

<!-- Set Ego to its initial position -->

<TeleportAction>

<Position>

<WorldPosition x = "-2.51"

y = "-115.75"

z = "0"

h = "1.57"

p = "0"

r = "0" />

</Position>

</TeleportAction>

</PrivateAction>

...

<!-- Similar actions -->

</Private>

</Actions>

</Init>

...

</Storyboard>

30

Story

Stories are used to group Acts. While it’s never

required to use more than one Story, here,

two Stories are used:

• AbortedOvertake describes the overtakes and

emergency stops

• RightTurn describes the right turn

AbortedOvertake contains two Acts

• AbortedOvertakeAct1 controls the overtaking

behavior

• AbortedOvertakeAct2 control the emergency stops

RightTurn contains only a single Act, RightTurnAct.

<Story name = "AbortedOvertake">

<Act name = "AbortedOvertakeAct1">

...

<!-- Act content describing overtakes -->

</Act>

<Act name = "AbortedOvertakeAct2">

...

<!-- Act content describing emergency stops -->

</Act>

</Story>

<Story name = "RightTurn">

<Act name = "RightTurnAct">

...

<!-- Act content describing right turn -->

</Act>

</Story>

31

Acts

Acts (which contain ManeuverGroups),

allow application of Triggers to parts of

the scenario.

Triggers may be present at Act and Event level:

• At Act level, they are used to start the overtake

• At Event level, they control its execution

In this example, both C1 and C2 should start to

overtake at the same time. This makes it convenient

to put all content associated with both overtakes in

the same Act (AbortedOvertakeAct1).

The example to the right shows the structure

of the RightTurnAct which triggers when

Ego is close to the junction.

<Act name = "RightTurnAct">

<!-- Maneuver Group -->

...

<StartTrigger>

<ConditionGroup>

<Condition

name = "EgoCloseToJunction"

delay = "0"

conditionEdge = "rising">

<!-- ByEntity condition: Ego close to junction -->

...

</Condition>

</ConditionGroup>

</StartTrigger>

</Act>

32

ManeuverGroups

In AbortedOvertakeAct1, two vehicles perform

the same Actions. However, not all of these

Actions should happen at the same time.

C1 and C2 return to their original lane when

they have passed the Ego vehicle,

independent of what the other one is doing.

This behavior can be achieved by using

separate ManeuverGroups for each vehicle

(C1ManeuverGroup and C2ManeuverGroup).

Each ManeuverGroup allocates a Maneuver

(from a Catalog) to one vehicle. This Maneuver

instructs that vehicle to change lane, accelerate,

and then return to the previous lane ahead of

the Ego vehicle.

<ManeuverGroup name = "C1ManeuverGroup"

maximumExecutionCount = "1">

<Actors selectTriggeringEntities = "false">

<EntityRef entityRef = "C1"/>

</Actors>

<CatalogReference catalogName = "overtake"

entryName = "Overtake Ego vehicle">

<!—Parameter assignment -->

...

</CatalogReference>

</ManeuverGroup>

<ManeuverGroup name = "C2ManeuverGroup"

numberOfExecutions = "1">

...

<!-- similar to above -->

</ManeuverGroup>

33

Maneuvers (1/2)

Analogous to Stories, it’s never essential to

use more than one Maneuver.

If an Event is moved from one Maneuver to

another (within the same ManeuverGroup) the

scenario will work in the same way.

In AbortedOvertakeAct1, vehicles C1 and C2

need to perform an overtake in the same way,

but it must be specified in two different

ManeuverGroup elements.

Therefore, a Catalog Maneuver is defined:

<Catalog name = "Overtake">

<Maneuver name = "Overtake Ego Vehicle">

<ParameterDeclarations>

<ParameterDeclaration name = " $OvertakingVehicle"

parameterType = " string"

value = ""/>

<!-- "" will be overwritten by scenario -->

</ParameterDeclarations>

<!-- Events to define overtake behaviour -->

<Event ...> ... </Event>

...

</Maneuver>

</Catalog>

34

Maneuvers (2/2)

The before-mentioned maneuver is referenced

within both ManeuverGroups. Thus, the

Catalog reference itself does not define which

Vehicle executes the Actions.

However, it does contain a Condition to

check when the overtaking vehicle can

return to its lane.

This requires the names of the two

vehicles involved to be specified. To

achieve this, a Parameter with the

name of the vehicle overtaking is

included in the Catalog reference.

<ManeuverGroup name = "C1ManeuverGroup"

maximumExecutionCount = "1">

<Actors selectTriggeringEntities = "false">

<EntityRef entityRef = "C1"/>

</Actors>

<CatalogReference catalogName = "Overtake"

entryName = "OvertakeEgoVehicle">

<ParameterAssignments>

<ParameterAssignment parameterRef = "OvertakingVehicle"

value = "C1"/>

</ParameterAssignments>

</CatalogReference>

</ManeuverGroup>

<ManeuverGroup name = "C2ManeuverGroup"

maximumExecutionCount = "1">

<Actors selectTriggeringEntities = "false">

<EntityRef entityRef = "C2"/>

</Actors>

<CatalogReference catalogName = "Overtake"

entryName = "OvertakeEgoVehicle">

<ParameterAssignments>

<ParameterAssignment parameterRef = "OvertakingVehicle"

value = "C2"/>

</ParameterAssignments>

</CatalogReference>

</ManeuverGroup>

35

Events

The lane change Action should start straight away

when its parent Act is triggered. Events are required

to apply Triggers to Actions. In this

example, a trivial Condition is used to trigger

immediate execution.

For other Events, Conditions are used to ensure a

certain state is reached before the Action is applied

(for example, the acceleration Event must not start

until the vehicle has changed lane).

<Event name = "brake event"

priority = "overwrite">

...

<!-- Emergency stop action -->

<StartTrigger>

<ConditionGroup>

<Condition name = "StartConditionOfAborted

OvertakeAct2"

delay = "0"

conditionEdge = "none">

<ByValueCondition>

<SimulationTimeCondition value = "0

"

rule = "g

reaterThan"/>

</ByValueCondition>

</Condition>

</ConditionGroup>

</StartTrigger>

</Event>

36

Dr.-Ing. Ludwig Friedmann

BMW AG

Phone: +49 151 601 22102

Email: ludwig.friedmann@bmw.de

