ASAM Open Simulation Interface

Currently Planned Features and Enhancements

Pierre R. Mai PMSF IT Consulting 2020-02-21 Höhenkirchen, Germany

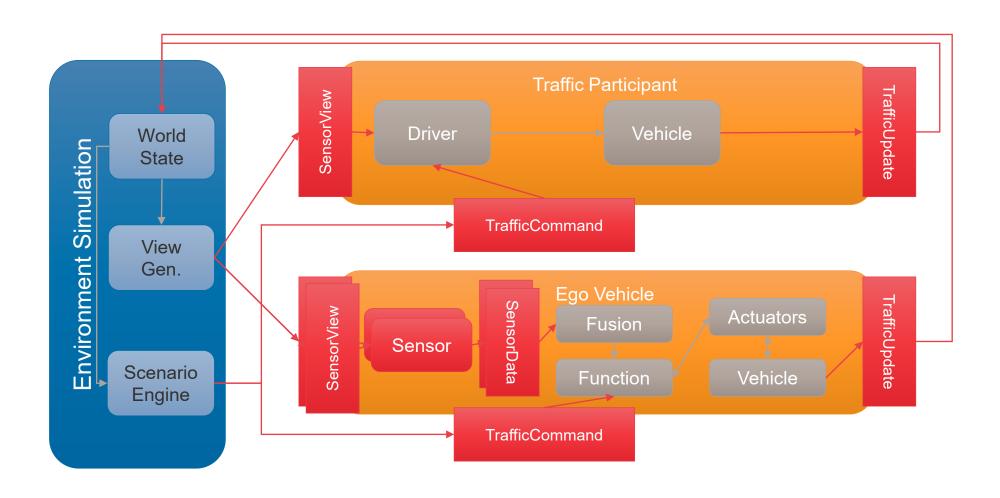
Who Am I?

Pierre R. Mai, PMSF IT Consulting pmai@pmsf.de

- OSI CCB Member
- Interim ASAM Simulation Domain Coordinator
- MAP FMI Advisory Board Member
- MAP SSP Founding Member

Topics of currently planned enhancements to OSI/OSMP

1	Traffic Participant, Enhanced Vehicle Data
2	Enhancements for Physical Sensor Modeling
3	Harmonization with ISO 23150
4	Harmonization with ASAM OpenX
5	Performance and Encodings


Traffic Participant, Vehicle Data

Traffic Participant

SETLevel4To5 Project Input

Traffic Participant

- A Traffic Participant is a new OSMP Model Type:
 - Inputs:
 - 1..n OSI::SensorViews
 - 0..1 OSI::TrafficCommand
 - Outputs:
 - 1 OSI::TrafficUpdate
- Covers both traffic agents and EGO vehicles:
 - Traffic agents will contain driver/vehicle models as suitable for task
 - EGO vehicles will contain more internal structure:
 - Standardized sensor models (OSI::SensorView -> OSI::SensorData)
 - HAD functions (fusion/perception, decision making, planning, etc.)
 - Actuator and internal sensor models
 - Vehicle dynamics

Vehicle Data Enhancements

- Enhancement of MovingObject Vehicle attributes:
 - Externally visible vehicle attributes, e.g.
 - Position and orientation of wheels/wheelcarriers,
 - Wheel speeds
 - ...
- In Vehicle Data attributes:
 - Internally available in vehicle data, e.g.
 - Engine RPM,
 - Bus voltage

• ...

Physical Sensor Modeling

Enhancements for Physical Sensor Modeling

Current Status

- Full support for phenomenological sensor modeling using object-list level ground truth input
- Initial support for physical sensor modeling:
 - RadarSensorView
 - LidarSensorView
 - CameraSensorView

Future Enhancements

- Add deeper support for physical sensor modeling, e.g.
 - More
 - Fine-tune definitions of provided data

Harmonization with ISO 23150

Harmonization with ISO 23150

ISO/CD 23150: Road vehicles – Data communication between sensors and data fusion unit for automated driving functions – Logical Interface

Current Status

- ISO 23150 is currently in Committee Draft Stage (Stage 30.60)
- OSI SensorData is partially synchronized with earlier draft versions of ISO 23150

Future Enhancements

Goal is full harmonization with ISO 23150 CD and future DIS and IS releases

Harmonization with ASAM OpenX

Harmonization with ASAM OpenX Standards

Current Status

- OSI takes OpenDRIVE road network data into account, but abstracted for real-time communication usage
- No full alignment on various attributes, e.g. traffic signs, traffic signals, ...

Future Enhancements

Near Term

- Align road network data with ASAM OpenDRIVE 1.6 where appropriate
- Align OSI::TrafficCommand with ASAM OpenSCENARIO 1.0 release

Medium Term

- Based on common ontology across OpenSCENARIO, OpenDRIVE and OSI, align domain models
- Use common IDL across standard specifications (potentially based on OpenSCENARIO 2.0 language)

Performance and Encodings

Performance and Encodings

IDLs and Encodings

Current Status

- OSI uses subset of Google Protocol Buffers Proto2 IDL
- Support for Proto3 conversion, with on-the-wire compatiblity
- Bad interaction between C++ unified namespaces on Linux and Google Protocol Buffers when used with FMI
- Performance characteristics of Protocol Buffers not well aligned with fast sensor simulation

Future Enhancements

- Near Term
 - Add support for Google Flatbuffer encoding based on Proto2 IDL
- Medium Term
 - Examine support for other encodings
 - Switch to common IDL with other ASAM OpenX standards

Protocol Buffers Performance Characteristics

Google Protocol Buffers:

- Encoding designed for intra- and inter data-center request/response communication
 optimized for smaller size vs. encoding speed/complexity
 (encoding is data-dependent, producing frequent branch prediction misses, no fixed data layout)
- No in-place data access (requires full decoding prior to data access)
- No in-place data mutation (requires full re-encoding even for minor changes)

Compared e.g. to Google Flatbuffers:

- Support for in-place data access
- Support for in-place data mutation
- Very fast encoding/decoding performance

Protocol Buffers Performance Characteristics

• Performance comparison:

	FlatBuffers (binary)	Protocol Buffers LITE	Rapid JSON	FlatBuffers (JSON)	pugixml	Raw structs
Decode + Traverse + Dealloc (1 million times, seconds)	0.08	302	583	105	196	0.02
Decode / Traverse / Dealloc (breakdown)	0 / 0.08 / 0	220 / 0.15 / 81	294 / 0.9 / 287	70 / 0.08 / 35	41 / 3.9 / 150	0 / 0.02 / 0
Encode (1 million times, seconds)	3.2	185	650	169	273	0.15
Wire format size (normal / zlib, bytes)	344 / 220	228 / 174	1475 / 322	1029 / 298	1137 / 341	312 / 187
Memory needed to store decoded wire (bytes / blocks)	0/0	760 / 20	65689 / 4	328 / 1	34194 / 3	0/0
Transient memory allocated during decode (KB)	0	1	131	4	34	0
Generated source code size (KB)	4	61	0	4	0	0
Field access in handwritten traversal code	typed accessors	typed accessors	manual error checking	typed accessors	manual error checking	typed but no safety
Library source code (KB)	15	some subset of 3800	87	43	327	0

Quelle: FPL https://google.github.io/flatbuffers/flatbuffers benchmarks.html

Pierre R. Mai Owner / Director, PMSF IT Consulting

Phone: +49 8161 976 96 - 11

Email: pmai@pmsf.de

