OpenSCENARIO 2.0 Concept Project
P2019-02 — Status Update

Gil Amid (with Pierre Mai) 28. Oktober 2019
Munchen

Foretellix Ltd

Lkl Z 7 (i
1 2\ ASA M Association for Standardization of
\”] Automation and Measuring Systems

Agenda

Current Status

Deliverables

& ASAM

Motivation

» AV development and certification requires massive usage of scenario driven simulation.
Exhaustive simulation is a MUST HAVE for development and qualification of AD and Autonomous driving systems

« OpenSCENARIO 0.9/1.x is in its stabilization phase,
« during various workshop it became clear there are additional needs, which may not be met by evolution.

« Overall Goal: A standard with all the required features to enable testing and validation of ADAS systems and
autonomous vehicles.

 OpenSCENARIO 2.0 should serve as the format and mechanism to supply dynamic content and functional behavior
to all testing and execution platforms, for all driving scenarios ranging from simple motor-way interactions to long-
running, complex inner-city traffic scenarios.

o ASAM

Technical Content

 OpenSCENARIO 2.0 needs to support:
» Definition of tests and scenarios for the full development process of
autonomous vehicles
« the full complexity of real-world scenarios, including complex inner-city traff

* Required use cases: span from pure software-based simulation, through SIL,
HIL, VIL hybrid testing models, up to test tracks and street driving.

» Concept project focus:
» Focus on the set of 12 features as defined in the proposal work shop.
* Define architecture for the main scenario models, and interface to other
required models (e.g. Environment, Driver, Traffic)
« Address varying levels of requirements for parametrization, accuracy
« Address different use cases of scenarios.

Feature

Type

F001: Maneuver model

Change

FO008: High level maneuver descriptions

New

FO03: Traffic Model

New

FO07: Parameter stochastics

New

F002: Driver Model

New

F004: Environmental Condition Model

New

FO009: Replay of Recorded Scenarios

New

F010: Automatic parameter calculation

New

FOO05: Infrastructure Event Model

New

FO06: Vehicle dynamics model

Change

F011: Additional metadata for parameters

New

F012: Language Constructs for Localization

New

o ASAM

General Requirements

The requirements span over many use cases, and many
needs.

TABLE: ISSUE DESCRIPTIONS

Title/Description

R0OO1

Avoid Different Ways to Model

R002

Define Elements as 'Mandatory' Only When Absolutely Needed

R0O03

Maintain Independence and Open Linking Between Standards.

R004

Define Three Levels of Control for Ego Vehicles.

R0O05

Allow Tool-Vendor Specific Extensions.

R0O06

Allow Definition of Feature Subsets

R0O0O7

Define Semantics to Enable Reproducibility and Single Interpreta-
tion. (Workshop phrasing was: Well Defined Semantics Requirement

)

R0O08

Allow both Open-loop and Closed-loop Simulation by the Same Ma-
neuver Descriptions. (Workshop phrasing: Maneuver Description
Shall be Suitable for Open-loop and Closed-loop Simulation)

R009

Define Parameter Boundaries

R0O10

Synchronize Maneuvers and Events

R011a

Allow Definition of Success Criteria for Individual Maneuvers, and for
Full Scenarios and Tests — DUT criteria

RO11b

Allow Definition of Success Criteria for Individual Maneuvers, and for
Full Scenarios and Tests — non-DUT criteria

R0O12

Allow Textual Editing of the Format. (Workshop phrasing was: Suita-
bility for textual editing)

o ASAM

Current Status

o ASAM

Key Messages

(Details in next slides)

* Projects includes ~100 engineers from ~50 companies. (about
50% active — attending f2fs)

» Key concepts identified and agreed on by project team

* Project restructured in order to accelerate progress toward
meeting schedule.

* New structure launched early October.

» Expecting to meet schedule +/- a month.

o ASAM

Sep-19/20 F2F Key Decisions

~40 participants in the f2f.

* Project approved a DSL (Domain Specific Language) direction

* Project approved key concepts recommended by the maneuvers work

group for the DSL content (Composability of scenarios, constraints,

scenario modifiers for abstract scenarios)

Concepts for parameters, measurements and grading were ratified

Project decided to use Foretellix's M-SDL as an example language,

whenever syntax and examples are required

* Project created a revised outline for the concept document

« Approved restructure to 3 main work groups, with smaller teams/tasks
forces to deliver different sections of the concept document.

o ASAM

Original Project structure

7 Work groups worked in parallel.

Architecture groups owns overall
architecture concept and interface.

WG leaders meeting serves as
synchronization body.

OpenScenario Concept Project Working Groups

Architecture
Pierre Mai

Glossary &
Notations
Roberto
Ponticelli

Parameters &

constraint
handling
Juergen
Krasser

Measurements
, grading &
success
Bolin Zhou
Justyna Zander

Define a global
architecture
based on
requirements
of other WGs

Define the
vocabulary
needed to
address each
0sC
requirement/f
eature.

Methods for
describing
parameter
distributions
and variations

Methodology
for
determining
the
performance
of a scenario
simulation, i.e.
pass/fail?

Scenario
creation

methods
Siddhant
Gupta

Models

Jupp Tscheak
Interface to topology & roads
Michael Kluge

Maneuver
Description
Siddartha
Khastgir
Yoav
Hollander

Identify
requirements
based on
different
approaches to
scenario
creation

Define a data
interface to
models
(driver,
dynamics,
weather, etc.)

Define a data
model with an
abstracted
interface to
various
road/topology
formats

Define an
approach for
expressing the
dynamic
behavior of a
scenario

o ASAM

New Project Structure

« 3 main clusters, each coordinating smaller task forces

» Each task force is responsible for a section of the Prepare the
concept document tg::i?r: ;::;tpters in
Document

Finalize and Discuss and finalize Clarify and tighten Abstraction levels
document the data basic semantics of semantics of of scenarios,
types of the parameters and Modifiers translation
language constraints. between levels
Define entities Describe the Collect and Define multiple
(actors) via their basic framework collate the real-world use
basic properties, of the ontology terminology and cases using
relationships and definitions used multiple

actions across the WGs abstraction

levels.

& ASAM

Some Examples

o ASAM

M-SDL example: cut_in_and_slow

scenario dut.cut_in_and_slow:

car1: car # The other car

side: av_left_right # A side: left or right

path: path # A path in the map
path_min_lanes(path, 2) # Path should have at least two lanes
do serial:

get_ahead: parallel(duration: in [1..5]s):
dut.car.drive(path) with:
speed([30..70]kph)
carl.drive(path, adjust: TRUE) with:
position([5..100]m, behind: dut.car,at: start)

position([5..15]m, ahead_of: dut.car, at: end)
change_lane: parallel(duration: in [2..5]s): “ \

dut.car.drive(path)

car1.drive(path) with:
lane(side_of: dut.car, side: side, at: start)
lane(same_as: dut.car, at: end)

slow: parallel(duration: in [1..5]s):

dut.car.drive(path) “

car1.drive(path) with:
speed_change(-[10..15]kph)

Using modifiers to control scenario dynamics

e Modifiers are like constraints but more general. Examples:

e Control movements via movement modifiers

— v1 drives 10..20 kph faster than v2:

m >
v1.drive() with: speed([10..20]kph, faster than: v2) V2| vz J— >
e Control the scenario’s location via path modifiers
— Path (road) p should have at least 2 lanes:
path_min_lanes(p, 2) e tnighe of: v1)
speed ([7..15]kph, faster than: vl)
/ | position([20..70]lm, ahead of: vl)
e Control synchronization between events e o e)

lane (same_as: v2)

— Sync these two events to within -1..1 second of each other: lateral ([10..25]cm, left of: v2)

synchronize(phase _a.end, phase b.start, [-1..1]s)
e You can use any number of modifiers in the same invocation

— E.g. to express the complex situation on the right

Composition: Writing a full scenario

e Here is the full overtake scenario

scenario traffic.overtake: i
vl: car # The first car
v2: car # The second car overtake
p: path
do parallel (duration: [3..20]s): .
v2.drive (p) v2.drive
serial:
A: vl.drive (p) with:
position([10..20]lm, behind: v2, at: start)
lane (same_as: v2, at: start)
lane (left of: v2, at: end)
B: vl.drive (p) with: a 5 3
position([1l..10]lm, ahead of: v2, at: end) Rk i .
C: vl.drive(p) with: - v1.drive v1.drive v1.drive
lane (same_as: v2, at: end)
position([5..10]lm, ahead of: v2, at: end) Time >
e You can then compose this scenario using e.g. serial
scenario overtake serial
car a: car
car b: car
do serial: overtake overtake
overtake(vl: car _a, v2: dut.car)
overtake(vl: car b, v2: dut.car) 11nqe >

Scenario invocation syntax

e Scenario name

— scenario operators
serial: ... parallel: ... first of: ...
— atomic scenarios (actions)
drive() ... walk()... wait...

— user-defined scenarios
overtake() ... cut_in()...

one_of: ... mix: ...

e Scenario invocation
[label:] [path.][name(parameter, ...) [with: modifier ...]

— label is optional
d: drive(...) ... or

— path is optional
dut.car.drive(...) ... or drive(...) ...

— parameter can be by name or by position
drive(path) or drive(path)

— modifier is similar to scenario invocation
speed(5 kmh, faster than: carl)

drive(...) ...

15

repeat: ...

scenario traffic.overtake:
vl: car # The first car
v2: car # The second car
p: path
(vl.color != green)

do parallel (duration: [3..20]s):
v2.drive (p)
serial:
A: vl.drive(p) with:
(same_as: v2, at: start)
(left of: v2, at: end)
([10..20]lm, behind: v2, at: start)
B: vl.drive (p)
C: vl.drive(p) with:
(same_as: v2, at: end)
([5..10]m, ahead of: v2, at: end)

import sumo config.sdl # Execution platform
import lane change scenarios.sdl # Library

extend top.main: # Extend the predefined main
(“some map.xodr”) # Map to use in test
do overtake (v2: dut.car)

Example: Writing a concrete scenario

e So far, we wrote an abstract scenario, then constrained it “from above”

scenario traffic.overtake:

vl: car Some lines from the original abstract

do parallel (duration: [3..20]s): scenario: Note the ranges
position([10..20]m, behind: v2, at: start)

 \We can write a concrete scenario “from scratch”

scenario traffic.concrete overtake:

vl: car:
keep(vl.color == green)
keep (vl.category == truck . . .
P gory) Same lines if we want to write
do parallel (duration: 7second) : a concrete scenario from the start

. position(10.5m, behind: v2, at: start)
. speed(18.7kph) # Note that speed was not
mentioned

Example: Driver-in-the-loop

normal drive near hit

normal drive

near hit

Time D

scenario dut.near hit:
do one of():
turn right plus(v2: dut)
overtake (v2: dut)
car ignoring red light ()

scenario dut.DIL multi near hit:
how long: time # How long to run it

do run time(duration: how long):
repeat () :

wait time ([5..20]s) # Let him relax a bit
near hit() # Plan the next near-hit

dut.car.drive (duration: how _long) # Drive the dut

This scenario will cause a random
near hit situation

This scenario will repeatedly wait some
seconds and then plan and execute
another random near-hit

Concrete to abstract

scenario traffic.overtake:
vl: car #
v2: car #
p: path

The first car

The second car

do parallel (duration: [3..20]s):
v2.drive (p)
serial:
A: vl.drive (p) with:
(same _as: v2, at: start)
(left of: v2, at: end)

This is a more abstract
version of overtake

This is a very concrete
version of overtake

do serial:
overtake
overtake

(vl:
(vl:

car a, v2: dut.car)
car b, v2: dut.car)

scenario traffic.overtake repeat
do repeat (count: 10):
wait time ([10..20]s)
overtake serial

18

([10..20]m, behind: v2, at: start)
B: vl.drive (p)
C: vl.drive(p) with:
(same _as: v2, at: end)
([5..10]m, ahead of: v2, at: end)
scenario traffic.overtake dut
do overtake (v2: dut.car) with:
keep (it.A.duration == 3s)
scenario traffic.overtake serial
car a: Ccar
car p: Ccar

This scenario invokes
overtake with some

naramatare
paramelersS

This scenario does two
overtakes serially

This scenario repeats
overake_serial 10 times

v1 A (to left) B (straight)

C (to right)

\% straight

Time JINEEGEGND

scenario traffic.overtake concrete:
vl: car with(category: sedan, color:
p: path

black)

(p, [point (*15”,30m), point (“95”,1.5m),

do parallel (duration: 10s):
dut.car.drive (p) with:
lane (2)
speed (50kph)
serial:

A: vl.drive(p, duration: 3s) with:

speed (70kph)

(2, at: start)
lane (1, at: end)
(15m, behind: dut.car, at: start)
position(lm, ahead of: dut.car, at: end)
B: vl.drive (duration: 4s) with:
position(5m, ahead of: dut.car, at: end)
C: vl.drive(p, duration: 3s) with:
(80kph)
(2, at: end)
(10m, ahead of: dut.car, at: end)

1)

Multiple, iIndependent movement constraints

This is phase A Phase A Phase B
Note the relations (speed, position,
lateral offset etc.)
between v3 and the other cars

scenario traffic.multi car:
vl: car # The first car
v2: car # The second car
v3: car # The third car
p: path

do serial:
A: parallel (duration: [3..20]s):
vl.drive (p) with: ..
v2.drive (p) with: ..
v3.drive (p) with:
(right_of: vl) Here is how you say that. Note that we
([7..15]kph, faster than: vl)
([20..70]m, ahead of: vl) need here six movement constraints
([10..30lm, ahead of: v2) (modifiers), each with its own set of
(same as: v2)
([IO..25]cm, left of: v2, measured by: center to center) parameters
B: parallel (duration: [3..20]s):
vl.drive (p) with: ..
v2.drive (p) with: ..
v3.drive (p) with: ..

19

Using event-based synchronization

scenario traffic.multi car:
vl: car # The first car
v2: car # The second car
p: path

event el is map.reach position(v2, pointl)
event e2 is map.reach speed(v2, 40kph)

do parallel:
vl part: serial:
walt Qel
vl.drive (p) with:
()
(.)
@e2: end()
vl.drive (p) with:
()
(.)
Qe3: end()
vZ2 part: serial:
v2.drive (p) with:
()
(...)
@ed: end()
v2.drive (p) with:
()
(...)

vl.distance to(point2) < 7):

v2.drive (p) with:
()
(...)

end ()

20

Events represent moments in
time. Can be defined using any
condition(or other events)

Define the whole scenario as
“parallel of serials”

End each step of the serial
upon some event

Can also specify
the condition inline

parallel of serials

parallel e1 e4 e2 (<condition> e3
starts | | ! !) ! !
N | | i |
[| | | |
[I | | |
[| I | |
o I i | |
[I | | |
| | :
vl part E dri\{e drive
. : | : :
v2_part drive drive drive

Time

Note that this whole parallel-of-serials can still be
a lego brick in something bigger

scenario traffic.multi car plus
do serial:
multi car(v2: dut.car)
if (dut.car.distance to(point3) < 10):
repeat (count: 3):
overtake serial

Deliverables

o ASAM

Current schedule

2019 2019
11/4/2019 > 12/3/2019 12/31/2019
Initial draft of concept documents F2F / Webex to agree on review points Final
> delivery of
10/18/2019 concept
Agreement on concepts for deliverables documents

Preparation of concept drafts _ 10/19/2019 - 11/4/2019
Internal (ASAM member) review of draft documents _ 11/5/2019-12/2/2019

. . . 12/4/2019 -
Integration of review ponts I -20:5

o ASAM

Deliverables

» The overall expected outcome of the project is a concept document

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2

2.1
2.2
2.3

Foreword

Introduction

Overview

Problem Statement & Motivation
Intended Audience

Standard Developers

ASAM Members

Relations to Other Standards
Backward Compatibility
References to Other Standards
Scope

Goals

Non-Goals

Methodology — Declarative Language
Key Terminology

Use Cases

5.1
5.2
5.3
5.4
5.5
5.6

6.1.1
6.1.2
6.1.3

711
71.2
713
714
71.5
7.2

Architecture

Domain Model

Interface Description

Dependencies and Interrelations
Ontology

Relationship Diagram / Ontology Nodes
Class Reference

Language Concepts

Concepts / Value Proposition
Parameters

Maneuvers

Usage and Pragmatics

Translation of Intent into Implementation
Library Concepts and Packaging
Scenario Creation

Measurement and Success Criteria
Usage Restrictions

Roadmap

Glossary of Terms

Language Constructs (Reference Manual
)

Syntax

o ASAM

Progress to date

* |nitial assignment of task force members expected to complete in the week

before the TSC
« Set up first meetings for each task force ASAP after this to ensure a running

start
 First/partial drafts of each section expected by next F2F in December

o ASAM

Relation to ISO and other standartization activities

Interact and align with ISO TC 22/SC 33/WG 9

“Test Scenario of autonomous driving vehicles”

Carlo Van-Driesten, Gil Amid, Siddartha Khastgir, Siddhant Gupta are members of this WG.

A communication and synchronization mechanism is being discussed these days (-> Category C Liaison).
Approved by the WG, need to be approved by the SC

* Focus of WG 9 on architecture and framework, potential to specify ASAM OpenScenario as relevant format
standard.

« X-membership with ISO’s SOTIF (WGO08) WG.

« X-membership with UL-4600 Stake holders review cycle.

« X-Membership with BS| PAS-1881

« X-membership with UNECE/GRVA

« X-membership with SAE’s ORAD committee and task forces.

o ASAM

Backup slides

o ASAM

Thank you for your attention!

Gil Amid
Foretellix Ltd

Phone: +972-58-4347475
Email:gil.amid@Foretellix.com

& ASAM

	OpenSCENARIO 2.0 Concept Project
	Agenda
	Motivation
	Technical Content
	General Requirements
	Current Status��
	Key Messages
	Sep-19/20 F2F Key Decisions
	Original Project structure
	New Project Structure�
	Some Examples��
	M-SDL example: cut_in_and_slow
	Using modifiers to control scenario dynamics
	Composition: Writing a full scenario
	Scenario invocation syntax
	Example: Writing a concrete scenario
	Example: Driver-in-the-loop
	Concrete to abstract
	Multiple, independent movement constraints
	Using event-based synchronization
	Deliverables�
	Current schedule
	Deliverables
	Progress to date
	Relation to ISO and other standartization activities
	Backup slides �
	Thank you for your attention!

