OpenSCENARIO 2.0 Concept Project P2019-02 – Status Update

Gil Amid (with Pierre Mai) Foretellix Ltd

28. Oktober 2019 München

Association for Standardization of Automation and Measuring Systems

Agenda

Background
Current Status
Deliverables

Motivation

- AV development and certification requires massive usage of scenario driven simulation. Exhaustive simulation is a MUST HAVE for development and qualification of AD and Autonomous driving systems
- OpenSCENARIO 0.9/1.x is in its stabilization phase,
 - during various workshop it became clear there are additional needs, which may not be met by evolution.
- Overall Goal: A standard with all the required features to enable testing and validation of ADAS systems and autonomous vehicles.
- OpenSCENARIO 2.0 should serve as the format and mechanism to supply dynamic content and functional behavior to all testing and execution platforms, for all driving scenarios ranging from simple motor-way interactions to longrunning, complex inner-city traffic scenarios.

Technical Content

- OpenSCENARIO 2.0 needs to support:
 - Definition of tests and scenarios for the full development process of autonomous vehicles
 - the full complexity of real-world scenarios, including complex inner-city traff
- Required use cases: span from pure software-based simulation, through SIL, HIL, VIL hybrid testing models, up to test tracks and street driving.
- Concept project focus:
 - Focus on the set of 12 features as defined in the proposal work shop.
 - Define architecture for the main scenario models, and interface to other required models (e.g. Environment, Driver, Traffic)
 - Address varying levels of requirements for parametrization, accuracy
 - Address different use cases of scenarios.

	INDEE. I ENTOREO
Feature	Туре
F001: Maneuver model	Change
F008: High level maneuver descriptions	New
F003: Traffic Model	New
F007: Parameter stochastics	New
F002: Driver Model	New
F004: Environmental Condition Model	New
F009: Replay of Recorded Scenarios	New
F010: Automatic parameter calculation	New
F005: Infrastructure Event Model	New
F006: Vehicle dynamics model	Change
F011: Additional metadata for parameters	New
F012: Language Constructs for Localization	New

General Requirements

• The requirements span over many use cases, and many needs.

	TABLE: ISSUE DESCRIPTIONS
ID	Title/Description
R001	Avoid Different Ways to Model
R002	Define Elements as 'Mandatory' Only When Absolutely Needed
R003	Maintain Independence and Open Linking Between Standards.
R004	Define Three Levels of Control for Ego Vehicles.
R005	Allow Tool-Vendor Specific Extensions.
R006	Allow Definition of Feature Subsets
R007	Define Semantics to Enable Reproducibility and Single Interpreta- tion. (Workshop phrasing was: Well Defined Semantics Requirement)
R008	Allow both Open-loop and Closed-loop Simulation by the Same Ma- neuver Descriptions. (Workshop phrasing: Maneuver Description Shall be Suitable for Open-loop and Closed-loop Simulation)
R009	Define Parameter Boundaries
R010	Synchronize Maneuvers and Events
R011a	Allow Definition of Success Criteria for Individual Maneuvers, and for Full Scenarios and Tests – DUT criteria
R011b	Allow Definition of Success Criteria for Individual Maneuvers, and for Full Scenarios and Tests – non-DUT criteria
R012	Allow Textual Editing of the Format. (Workshop phrasing was: Suitability for textual editing)

Current Status

(Details in next slides)

- Projects includes ~100 engineers from ~50 companies. (about 50% active attending f2fs)
- Key concepts identified and agreed on by project team
- Project restructured in order to accelerate progress toward meeting schedule.
- New structure launched early October.
- Expecting to meet schedule +/- a month.

Sep-19/20 F2F Key Decisions

~40 participants in the f2f.

- Project approved a DSL (Domain Specific Language) direction
- Project approved key concepts recommended by the maneuvers work group for the DSL content (Composability of scenarios, constraints, scenario modifiers for abstract scenarios)
- Concepts for parameters, measurements and grading were ratified
- Project decided to use Foretellix's M-SDL as an example language, whenever syntax and examples are required
- Project created a revised outline for the concept document
- Approved restructure to 3 main work groups, with smaller teams/tasks forces to deliver different sections of the concept document.

Original Project structure

- 7 Work groups worked in parallel.
- Architecture groups owns overall architecture concept and interface.
- WG leaders meeting serves as synchronization body.

Architecture Pierre Mai	Glossary & Notations Roberto Ponticelli	Parameters & constraint handling Juergen Krasser	Measurements , grading & success Bolin Zhou Justyna Zander
Define a global architecture based on requirements of other WGs	Define the vocabulary needed to address each OSC requirement/f eature.	Methods for describing parameter distributions and variations	Methodology for determining the performance of a scenario simulation, i.e. pass/fail?
Scenario creation methods Siddhant Gupta	Mo Jupp T Interface to to Michae	Models Jupp Tscheak Interface to topology & roads Michael Kluge	

OpenScenario Concept Project Working Groups

New Project Structure

- 3 main clusters, each coordinating smaller task forces
- Each task force is responsible for a section of the concept document

Overview Documentation

Prepare the general chapters in

the Concept

Some Examples

M-SDL example: cut_in_and_slow

scenario dut.cut_in_and_slow:

car1: car # The other car side: av left right # A side: left or right path: path # A path in the map path_min_lanes(path, 2) # Path should have at least two lanes do serial: get_ahead: parallel(duration: in [1..5]s): dut.car.drive(path) with: **speed**([30..70]kph) car1.drive(path, adjust: TRUE) with: **position**([5..100]m, behind: dut.car,at: start) **position**([5..15]m, ahead of: dut.car, at: end) **change_lane: parallel**(duration: in [2..5]s): dut.car.drive(path) car1.drive(path) with: lane(side of: dut.car, side: side, at: start) **lane**(same as: dut.car, at: end) **slow:** parallel(duration: in [1..5]s): dut.car.drive(path) car1.drive(path) with: speed_change(-[10..15]kph)

Using modifiers to control scenario dynamics

- Modifiers are like constraints but more general. Examples:
- Control movements via movement modifiers
 - v1 drives 10..20 kph faster than v2:

v1.drive() with: speed([10..20]kph, faster_than: v2)

- Control the scenario's location via *path* modifiers
 - Path (road) p should have at least 2 lanes:

path_min_lanes(p, 2)

- Control *synchronization* between events
 - Sync these two events to within -1..1 second of each other:

synchronize(phase_a.end, phase_b.start, [-1..1]s)

- You can use *any number* of modifiers in the same invocation
 - E.g. to express the complex situation on the right


```
v3.drive(p) with:
lane(right_of: v1)
speed([7..15]kph, faster_than: v1)
position([20..70]m, ahead_of: v1)
position([10..30]m, ahead_of: v2)
lane(same_as: v2)
lateral([10..25]cm, left_of: v2)
```

Composition: Writing a full scenario

• Here is the full overtake scenario

• You can then compose this scenario using e.g. serial

Scenario invocation syntax

- Scenario name
 - scenario operators

serial: ... parallel: ... first_of: ... one_of: ... mix: ... repeat: ...

atomic scenarios (actions)

drive()... walk()... wait...

- user-defined scenarios overtake() ... cut_in() ...
- Scenario invocation

[label:] [path.]name(parameter, ...) [with: modifier ...]

- label is optional
 - d: drive(...) ... or drive(...) ...
- *path* is optional

dut.car.drive(...) ... or drive(...) ...

- parameter can be by name or by position drive(path) or drive(path)
- modifier is similar to scenario invocation speed(5 kmh, faster_than: car1)

scenario traffic.overtake:

```
v1: car # The first car
v2: car # The second car
p: path
keep(v1.color != green)
do parallel(duration: [3..20]s):
    v2.drive(p)
    serial:
        A: v1.drive(p) with:
            lane(same_as: v2, at: start)
            lane(left_of: v2, at: start)
            lane(left_of: v2, at: end)
            position([10..20]m, behind: v2, at: start)
```

B: v1.drive(p)

```
C: v1.drive(p) with:
    lane(same_as: v2, at: end)
    position([5..10]m, ahead_of: v2, at: end)
```

import sumo_config.sdl # Execution platform
import lane_change_scenarios.sdl # Library

```
extend top.main: # Extend the predefined main
    set_map("some_map.xodr") # Map to use in test
    do overtake(v2: dut.car)
```

Example: Writing a concrete scenario

• So far, we wrote an abstract scenario, then constrained it "from above"

```
scenario traffic.overtake:
  v1: car
...
do parallel(duration: [3..20]s):
  ... position([10..20]m, behind: v2, at: start)
```

Some lines from the original abstract scenario: Note the ranges

• We can write a concrete scenario "from scratch"

```
scenario traffic.concrete_overtake:
   v1: car:
   keep(v1.color == green)
   keep(v1.category == truck)
   ...
   do parallel(duration: 7second):
      ... position(10.5m, behind: v2, at: start)
      ... speed(18.7kph) # Note that speed was not
mentioned
```


Example: Driver-in-the-loop

normal drive	near hit	normal drive)	near hit		
Time						
<pre>scenario dut.near_hit: do one_of(): turn_right_plus(v2: dut) overtake(v2: dut) car_ignoring_red_light() </pre>				This scenarionnea	o will cause a ar hit situation	random
<pre>scenario dut.DIL_multi_near_hit:</pre>						

how_long: time # How long to run it
do run_time(duration: how_long):
 dut.car.drive(duration: how_long) # Drive the dut
 repeat():
 wait time([5..20]s) # Let him relax a bit

near hit() # Plan the next near-hit

This scenario will repeatedly wait some seconds and then plan and execute another random near-hit

Concrete to abstract

Multiple, independent movement constraints

	This is phas Note the relations (sp lateral offset between v3 and the	se A eed, position, etc.) e other cars	Phase A	Phase B
<pre>scenario traffic.multi_car: v1: car # The first car v2: car # The second car v3: car # The third car p: path do serial: A: parallel(duration: [320]s): v1.drive(p) with: v2.drive(p) with: v2.drive(p) with: v3.drive(p) with: v3.drive(p) with: v3.drive(p) with: v3.drive(p) with: v3.drive(p) with: v3.drive(p) with: v3.drive(p) with:</pre>		Here is	s how you say that. No	te that we
<pre>position([2070]m, ahead_of: v1) position([1030]m, ahead_of: v2) lane(same_as: v2) lateral([1025]cm, left of: v2, measured 1 B: parallel(duration: [320]s): v1.drive(p) with: v2.drive(p) with: v3.drive(p) with:</pre>	by: center to center)	(mod	here six movement co lifiers), each with its ov parameters.	nstraints vn set of

Using event-based synchronization

Deliverables

Current schedule

Deliverables

• The overall expected outcome of the project is a concept document

I	Foreword
1	Introduction
1.1	Overview
1.2	Problem Statement & Motivation
1.3	Intended Audience
1.3.1	Standard Developers
1.3.2	ASAM Members
1.4	Relations to Other Standards
1.4.1	Backward Compatibility
1.4.2	References to Other Standards
2	Scope
2.1	Goals
2.2	Non-Goals
2.3	Methodology – Declarative Language
3	Key Terminology
4	Use Cases

5	Architecture
5.1	Domain Model
5.2	Interface Description
5.4	Ontology
5.5	Relationship Diagram / Ontology Nodes
5.6	Class Reference
6	Language Concepts
6.1.1	Concepts / Value Proposition
6.1.2	Parameters
6.1.3	Maneuvers
7	Usage and Pragmatics
7.1.1	Translation of Intent into Implementation
7.1.2	Library Concepts and Packaging
7.1.3	Scenario Creation
7.1.4	Measurement and Success Criteria
7.1.5	Usage Restrictions
7.2	Roadmap
A	Glossary of Terms
B C	Language Constructs (Reference Manua) Syntax

Progress to date

- Initial assignment of task force members expected to complete in the week before the TSC
- Set up first meetings for each task force ASAP after this to ensure a running start
- First/partial drafts of each section expected by next F2F in December

Relation to ISO and other standartization activities

- Interact and align with ISO TC 22/SC 33/WG 9 "Test Scenario of autonomous driving vehicles"
- Carlo Van-Driesten, Gil Amid, Siddartha Khastgir, Siddhant Gupta are members of this WG.
- A communication and synchronization mechanism is being discussed these days (-> Category C Liaison).
 Approved by the WG, need to be approved by the SC
- Focus of WG 9 on architecture and framework, potential to specify ASAM OpenScenario as relevant format standard.
- X-membership with ISO's SOTIF (WG08) WG.
- X-membership with UL-4600 Stake holders review cycle.
- X-Membership with BSI PAS-1881
- X-membership with UNECE/GRVA
- X-membership with SAE's ORAD committee and task forces.

Backup slides

Thank you for your attention!

Gil Amid Foretellix Ltd

Phone: +972-58-4347475 Email:gil.amid@Foretellix.com

