
München
Gil Amid (with Pierre Mai)
Foretellix Ltd

OpenSCENARIO 2.0 Concept Project
P2019-02 – Status Update

28. Oktober 2019

Agenda

Background

Current Status

Deliverables

Motivation

• AV development and certification requires massive usage of scenario driven simulation.
Exhaustive simulation is a MUST HAVE for development and qualification of AD and Autonomous driving systems

• OpenSCENARIO 0.9/1.x is in its stabilization phase,
• during various workshop it became clear there are additional needs, which may not be met by evolution.

• Overall Goal: A standard with all the required features to enable testing and validation of ADAS systems and
autonomous vehicles.

• OpenSCENARIO 2.0 should serve as the format and mechanism to supply dynamic content and functional behavior
to all testing and execution platforms, for all driving scenarios ranging from simple motor-way interactions to long-
running, complex inner-city traffic scenarios.

Technical Content

• OpenSCENARIO 2.0 needs to support:
• Definition of tests and scenarios for the full development process of

autonomous vehicles
• the full complexity of real-world scenarios, including complex inner-city traffic.

• Required use cases: span from pure software-based simulation, through SIL,
HIL, VIL hybrid testing models, up to test tracks and street driving.

• Concept project focus:
• Focus on the set of 12 features as defined in the proposal work shop.
• Define architecture for the main scenario models, and interface to other

required models (e.g. Environment, Driver, Traffic)
• Address varying levels of requirements for parametrization, accuracy
• Address different use cases of scenarios.

General Requirements

• The requirements span over many use cases, and many
needs.

Current Status

Key Messages
(Details in next slides)

• Projects includes ~100 engineers from ~50 companies. (about
50% active – attending f2fs)

• Key concepts identified and agreed on by project team
• Project restructured in order to accelerate progress toward

meeting schedule.
• New structure launched early October.
• Expecting to meet schedule +/- a month.

Sep-19/20 F2F Key Decisions
~40 participants in the f2f.

• Project approved a DSL (Domain Specific Language) direction
• Project approved key concepts recommended by the maneuvers work

group for the DSL content (Composability of scenarios, constraints,
scenario modifiers for abstract scenarios)

• Concepts for parameters, measurements and grading were ratified
• Project decided to use Foretellix’s M-SDL as an example language,

whenever syntax and examples are required
• Project created a revised outline for the concept document
• Approved restructure to 3 main work groups, with smaller teams/tasks

forces to deliver different sections of the concept document.

Original Project structure

• 7 Work groups worked in parallel.

• Architecture groups owns overall
architecture concept and interface.

• WG leaders meeting serves as
synchronization body.

Architecture
Pierre Mai

Glossary &
Notations
Roberto
Ponticelli

Parameters &
constraint
handling
Juergen
Krasser

Measurements
, grading &

success
Bolin Zhou

Justyna Zander

Define a global
architecture
based on
requirements
of other WGs

Define the
vocabulary
needed to
address each
OSC
requirement/f
eature.

Methods for
describing
parameter
distributions
and variations

Methodology
for
determining
the
performance
of a scenario
simulation, i.e.
pass/fail?

OpenScenario Concept Project Working Groups

Maneuver
Description
Siddartha
Khastgir

Yoav
Hollander

Scenario
creation
methods
Siddhant

Gupta

Models
Jupp Tscheak

Interface to topology & roads
Michael Kluge

Define an
approach for
expressing the
dynamic
behavior of a
scenario

Identify
requirements
based on
different
approaches to
scenario
creation

Define a data
interface to
models
(driver,
dynamics,
weather, etc.)

Define a data
model with an
abstracted
interface to
various
road/topology
formats

New Project Structure

Data Type
Definition
Language

Basic Parameters
and Constraints

(Atomic)
Operations and

Modifiers

Pragmatics of
parametrization

Finalize and
document the data
types of the
language

Discuss and finalize
basic semantics of
parameters and
constraints.

Clarify and tighten
semantics of
Modifiers

Abstraction levels
of scenarios,
translation
between levels

Entity Definition Ontology
Definition

Essential
Terminology

Overview
Documentation

Define entities
(actors) via their
basic properties,
relationships and
actions

Describe the
basic framework
of the ontology

Collect and
collate the
terminology and
definitions used
across the WGs

Prepare the
general chapters in
the Concept
Document

Use case examples

Define multiple
real-world use
cases using
multiple
abstraction
levels.

• 3 main clusters, each coordinating smaller task forces
• Each task force is responsible for a section of the

concept document

Language Core

Usage &
Pragmatics

Domain Model

Architecture & Coordination

Some Examples

12

M-SDL example: cut_in_and_slow

A
V

scenario dut.cut_in_and_slow:

car1: car # The other car
side: av_left_right # A side: left or right
path: path # A path in the map
path_min_lanes(path, 2) # Path should have at least two lanes

do serial:
get_ahead: parallel(duration: in [1..5]s):

dut.car.drive(path) with:
speed([30..70]kph)

car1.drive(path, adjust: TRUE) with:
position([5..100]m, behind: dut.car,at: start)
position([5..15]m, ahead_of: dut.car, at: end)

A
V

change_lane: parallel(duration: in [2..5]s):
dut.car.drive(path)
car1.drive(path) with:

lane(side_of: dut.car, side: side, at: start)
lane(same_as: dut.car, at: end)

A
V

slow: parallel(duration: in [1..5]s):
dut.car.drive(path)
car1.drive(path) with:

speed_change(-[10..15]kph)

A
V

13

Using modifiers to control scenario dynamics

● Modifiers are like constraints but more general. Examples:

● Control movements via movement modifiers

− v1 drives 10..20 kph faster than v2:

v1.drive() with: speed([10..20]kph, faster_than: v2)

● Control the scenario’s location via path modifiers

− Path (road) p should have at least 2 lanes:

path_min_lanes(p, 2)

● Control synchronization between events

− Sync these two events to within -1..1 second of each other:

synchronize(phase_a.end, phase_b.start, [-1..1]s)

● You can use any number of modifiers in the same invocation

− E.g. to express the complex situation on the right

v3.drive(p) with:
lane(right_of: v1)
speed([7..15]kph, faster_than: v1)
position([20..70]m, ahead_of: v1)
position([10..30]m, ahead_of: v2)
lane(same_as: v2)
lateral([10..25]cm, left_of: v2)

V1

V2 V3

14

Composition: Writing a full scenario

● Here is the full overtake scenario

● You can then compose this scenario using e.g. serial

V1 V2

A B C

overtake

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
position([10..20]m, behind: v2, at: start)
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)

B: v1.drive(p) with:
position([1..10]m, ahead_of: v2, at: end)

C: v1.drive(p) with:
lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end) Time

v1.drive v1.drive

v2.drive

v1.drive

A B C

scenario overtake_serial
car_a: car
car_b: car
do serial:

overtake(v1: car_a, v2: dut.car)
overtake(v1: car_b, v2: dut.car) Time

overtake overtake

15

Scenario invocation syntax

● Scenario name
– scenario operators

serial: … parallel: … first_of: … one_of: … mix: … repeat: …
– atomic scenarios (actions)

drive() … walk() … wait …
– user-defined scenarios

overtake() … cut_in() …

● Scenario invocation
[label:] [path.]name(parameter, …) [with: modifier …]

– label is optional
d: drive(…) … or drive(…) …

– path is optional
dut.car.drive(…) … or drive(…) …

– parameter can be by name or by position
drive(path) or drive(path)

– modifier is similar to scenario invocation
speed(5 kmh, faster_than: car1)

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path
keep(v1.color != green)

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)
position([10..20]m, behind: v2, at: start)

B: v1.drive(p)
C: v1.drive(p) with:

lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end)

import sumo_config.sdl # Execution platform
import lane_change_scenarios.sdl # Library

extend top.main: # Extend the predefined main
set_map(“some_map.xodr”) # Map to use in test
do overtake(v2: dut.car)

V1 V2

16

Example: Writing a concrete scenario

• So far, we wrote an abstract scenario, then constrained it “from above”

• We can write a concrete scenario “from scratch”

scenario traffic.overtake:
v1: car
…
do parallel(duration: [3..20]s):

… position([10..20]m, behind: v2, at: start)

scenario traffic.concrete_overtake:
v1: car:
keep(v1.color == green)
keep(v1.category == truck)
…
do parallel(duration: 7second):

… position(10.5m, behind: v2, at: start)
… speed(18.7kph) # Note that speed was not

mentioned

Some lines from the original abstract
scenario: Note the ranges

Same lines if we want to write
a concrete scenario from the start

17

Example: Driver-in-the-loop

scenario dut.DIL_multi_near_hit:
how_long: time # How long to run it

do run_time(duration: how_long):
dut.car.drive(duration: how_long) # Drive the dut
repeat():

wait_time([5..20]s) # Let him relax a bit
near_hit() # Plan the next near-hit

Time

normal drive near hit normal drive near hit …

scenario dut.near_hit:
do one_of():

turn_right_plus(v2: dut)
overtake(v2: dut)
car_ignoring_red_light()
…

This scenario will cause a random
near hit situation

This scenario will repeatedly wait some
seconds and then plan and execute

another random near-hit

18

Concrete to abstract

v2

v1

Time

straight

A (to left) B (straight) C (to right)

V1 V2

scenario traffic.overtake_concrete:
v1: car with(category: sedan, color: black)
p: path
path_explicit(p,[point(“15”,30m), point(“95”,1.5m), …])

do parallel(duration: 10s):
dut.car.drive(p) with:

lane(2)
speed(50kph)

serial:
A: v1.drive(p, duration: 3s) with:

speed(70kph)
lane(2, at: start)
lane(1, at: end)
position(15m, behind: dut.car, at: start)
position(1m, ahead_of: dut.car, at: end)

B: v1.drive(p, duration: 4s) with:
position(5m, ahead_of: dut.car, at: end)

C: v1.drive(p, duration: 3s) with:
speed(80kph)
lane(2, at: end)
position(10m, ahead_of: dut.car, at: end)

scenario traffic.overtake:
v1: car # The first car
v2: car # The second car
p: path

do parallel(duration: [3..20]s):
v2.drive(p)
serial:

A: v1.drive(p) with:
lane(same_as: v2, at: start)
lane(left_of: v2, at: end)
position([10..20]m, behind: v2, at: start)

B: v1.drive(p)
C: v1.drive(p) with:

lane(same_as: v2, at: end)
position([5..10]m, ahead_of: v2, at: end)

scenario traffic.overtake_dut
do overtake(v2: dut.car) with:

keep(it.A.duration == 3s)

scenario traffic.overtake_serial
car_a: car
car_b: car
do serial:

overtake(v1: car_a, v2: dut.car)
overtake(v1: car_b, v2: dut.car)

scenario traffic.overtake_repeat
do repeat(count: 10):

wait_time([10..20]s)
overtake_serial

This is a more abstract
version of overtake

This is a very concrete
version of overtake

This scenario invokes
overtake with some

parameters

This scenario does two
overtakes serially

This scenario repeats
overake_serial 10 times

19

Multiple, independent movement constraints

Phase A Phase B

scenario traffic.multi_car:
v1: car # The first car
v2: car # The second car
v3: car # The third car
p: path

do serial:
A: parallel(duration: [3..20]s):

v1.drive(p) with: …
v2.drive(p) with: …
v3.drive(p) with:

lane(right_of: v1)
speed([7..15]kph, faster_than: v1)
position([20..70]m, ahead_of: v1)
position([10..30]m, ahead_of: v2)
lane(same_as: v2)
lateral([10..25]cm, left_of: v2, measured_by: center_to_center)

B: parallel(duration: [3..20]s):
v1.drive(p) with: …
v2.drive(p) with: …
v3.drive(p) with: …

This is phase A
Note the relations (speed, position,

lateral offset etc.)
between v3 and the other cars

Here is how you say that. Note that we
need here six movement constraints
(modifiers), each with its own set of

parameters.

V1

V2 V3

20

Using event-based synchronization

scenario traffic.multi_car:
v1: car # The first car
v2: car # The second car
p: path

event e1 is map.reach_position(v2, point1)
event e2 is map.reach_speed(v2, 40kph)
…

do parallel:
v1_part: serial:

wait @e1
v1.drive(p) with:

speed(…)
position(…)
on @e2: end()

v1.drive(p) with:
speed(…)
position(…)
on @e3: end()

v2_part: serial:
v2.drive(p) with:

speed(…)
position(…)
on @e4: end()

v2.drive(p) with:
speed(…)
position(…)
on (v1.distance_to(point2) < 7): end()

v2.drive(p) with:
speed(…)
position(…)

…

scenario traffic.multi_car_plus
do serial:

multi_car(v2: dut.car)
if (dut.car.distance_to(point3) < 10):

repeat(count: 3):
overtake_serial

Define the whole scenario as
“parallel of serials”

End each step of the serial
upon some event

Events represent moments in
time. Can be defined using any

condition(or other events)

Can also specify
the condition inline

Note that this whole parallel-of-serials can still be
a lego brick in something bigger

e3

v1_part

v2_part

Time

drive drive

drive drive drive

e1 e2e4 (<condition>
)

parallel
starts

parallel of serials

Deliverables

Current schedule

2019 2019Oct Nov Dec

Agreement on concepts for deliverables
10/18/2019

Initial draft of concept documents
11/4/2019

F2F / Webex to agree on review points
12/3/2019

Final
delivery of
concept
documents

12/31/2019

10/19/2019 - 11/4/2019Preparation of concept drafts

11/5/2019 - 12/2/2019Internal (ASAM member) review of draft documents

12/4/2019 -
12/30/2019Integration of review points

Deliverables
• The overall expected outcome of the project is a concept document

I Foreword
1 Introduction
1.1 Overview
1.2 Problem Statement & Motivation
1.3 Intended Audience
1.3.1 Standard Developers
1.3.2 ASAM Members
1.4 Relations to Other Standards
1.4.1 Backward Compatibility
1.4.2 References to Other Standards
2 Scope
2.1 Goals
2.2 Non-Goals
2.3 Methodology – Declarative Language
3 Key Terminology
4 Use Cases

5 Architecture
5.1 Domain Model
5.2 Interface Description
5.3 Dependencies and Interrelations
5.4 Ontology
5.5 Relationship Diagram / Ontology Nodes
5.6 Class Reference
6 Language Concepts
6.1.1 Concepts / Value Proposition
6.1.2 Parameters
6.1.3 Maneuvers
7 Usage and Pragmatics
7.1.1 Translation of Intent into Implementation
7.1.2 Library Concepts and Packaging
7.1.3 Scenario Creation
7.1.4 Measurement and Success Criteria
7.1.5 Usage Restrictions
7.2 Roadmap
A Glossary of Terms

B
Language Constructs (Reference Manual
)

C Syntax

Progress to date

• Initial assignment of task force members expected to complete in the week
before the TSC

• Set up first meetings for each task force ASAP after this to ensure a running
start

• First/partial drafts of each section expected by next F2F in December

• Interact and align with ISO TC 22/SC 33/WG 9
“Test Scenario of autonomous driving vehicles”

• Carlo Van-Driesten, Gil Amid, Siddartha Khastgir, Siddhant Gupta are members of this WG.
• A communication and synchronization mechanism is being discussed these days (-> Category C Liaison).

Approved by the WG, need to be approved by the SC
• Focus of WG 9 on architecture and framework, potential to specify ASAM OpenScenario as relevant format

standard.

• X-membership with ISO’s SOTIF (WG08) WG.
• X-membership with UL-4600 Stake holders review cycle.
• X-Membership with BSI PAS-1881
• X-membership with UNECE/GRVA
• X-membership with SAE’s ORAD committee and task forces.

Relation to ISO and other standartization activities

Backup slides

Thank you for your attention!

Gil Amid
Foretellix Ltd

Phone: +972-58-4347475
Email:gil.amid@Foretellix.com

	OpenSCENARIO 2.0 Concept Project
	Agenda
	Motivation
	Technical Content
	General Requirements
	Current Status��
	Key Messages
	Sep-19/20 F2F Key Decisions
	Original Project structure
	New Project Structure�
	Some Examples��
	M-SDL example: cut_in_and_slow
	Using modifiers to control scenario dynamics
	Composition: Writing a full scenario
	Scenario invocation syntax
	Example: Writing a concrete scenario
	Example: Driver-in-the-loop
	Concrete to abstract
	Multiple, independent movement constraints
	Using event-based synchronization
	Deliverables�
	Current schedule
	Deliverables
	Progress to date
	Relation to ISO and other standartization activities
	Backup slides �
	Thank you for your attention!

