Opportunities in real-time 3D autonomous driving simulations

Ed Martin, Sr. Product Manager, Manufacturing Vertical

Game engines will be critical in solving the AV problem

Autonomous Vehicle Perception Problem

- AV perception is driven by Machine Learning
- ML development is extremely data heavy
- Collecting data for ML is expensive
- Annotating data is both expensive and error prone
- Real-world data can only prepare for what has already happened

Explosion of Real-Time 3D

Real-time 3D engines are transforming our world.

- Optimized performance
- Flexible rendering
 - Physically-based rendering
 - Post-processing
 - Real-time ray tracing
- Mature content workflows

Can We Use Synthetic Data?

Research says yes

- Barcelona, Stanford, ... have published papers validating the approach
- Techniques like domain randomization proving useful
- Area of active research flexibility is key

Unity as a Simulation Platform for Autonomous Vehicles



Unity is Growing as a Simulation Platform

- Rendering Pipeline Options for Realism and Performance
- Other Enhanced Rendering Capabilities
- New Data-oriented Tech Stack
- Asset Store to Bootstrap Content
- New Editor and Workflow Capabilities
- Pluggable Physics
- TensorFlow Integration for Agent Training (ML Agents)

Rendering Pipeline Options

Render for your specific training application

Scriptable Render Pipeline

Highly customizable rendering technology allows you to tailor rendering to hardware and implement sensor-relevant rendering details with granular control.

Universal Render Pipeline

High processor efficiency with broad platform support.

High Definition Render Pipeline

High fidelity visuals for applications where visual quality is a priority.

Extra Rendering Capabilities

Ensure lighting is optimal for simulation realism (available in HDRP)

Real-time Ray Tracing

Moves graphics significantly closer to realism, opening the doors to global rendering effects once thought impossible in real-time.

GPU Progressive Light Mapper

Allows incredible iteration speeds for lighting and level design by providing interactive updates and continuous feedback.

9

Data-oriented Tech Stack (DOTS)

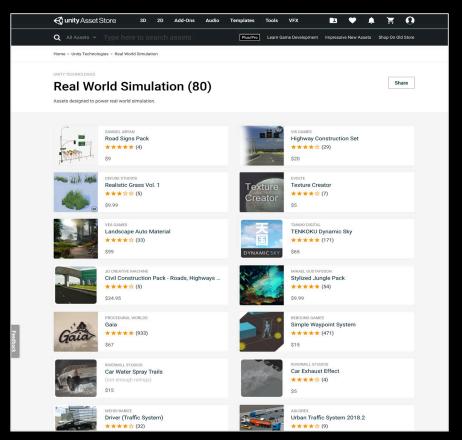
Scale your simulations to match the real world

Entity Component System

Framework for organizing data for scalable compute on modern hardware.

C# Job System

Take full advantage of multicore processors without all the programming headache.

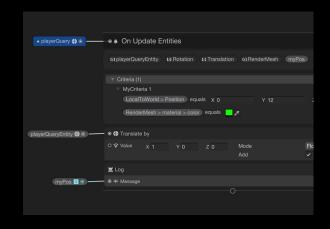


Burst Compiler

High performance C# compiler for optimized simulation.

Asset Store

Enviro - Sky and Weather (Hendrik Haupt)



New Editor and Workflow Capabilities

Create more complete environments more quickly

Timeline

Orchestrate scenes and choreograph sequenced events. Fully extensible and automatable.

Environment 2.0

Scalable terrain authoring using a node-based approach to design procedural rules.

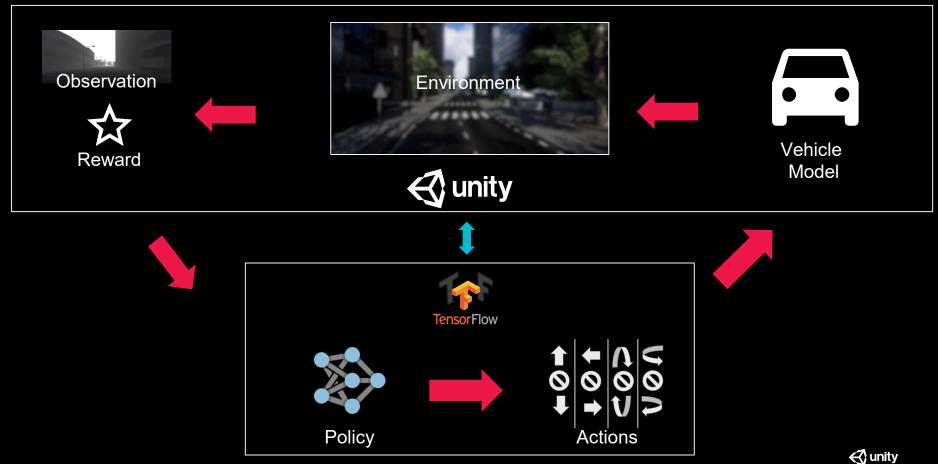
DOTSVisual Scripting

Bridge the gap between content creators and engineers through visual programming.

Pluggable Physics

DOTS Physics

Next generation Unity physics with customizable C# package. Scales to many cores



Havok Physics

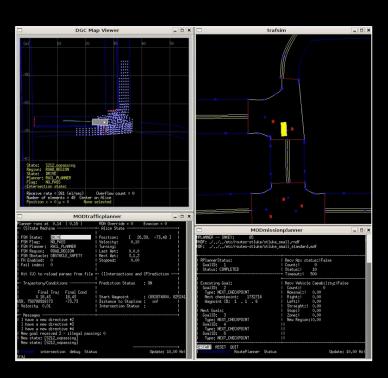
Powered by the industry leading Havok physics engine. Higher performance with lots of dynamic rigid bodies due to caching.

Connect to TensorFlow for Agent Training

A Vision for AV Simulation

The Autonomous Vehicle Industry Has Proactively Adopted Unity

Camera Customizations for Perception



Non-visual Planning Simulators

A Snapshot of Our Ecosystem

Three Reusable Sample Environments

Artificial Scenes included:

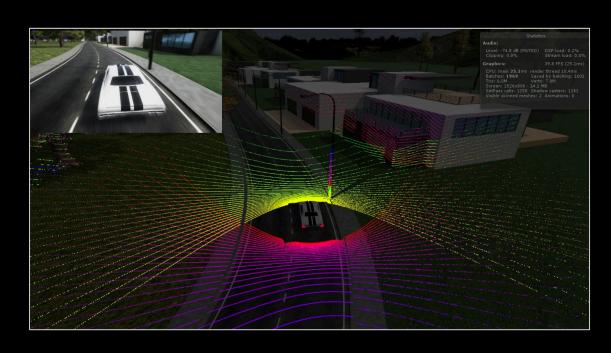
- Urban
- Suburban
- Highway

Some Demo Implementations of Sensors

SynCity Lite

Sensor Models included:

RGB-D Camera


LiDAR

Radar

IMU

GPS

Trends and Challenges Ahead of Us

We still need to scale data *massively*.

24hr/ 11 Billion 100 AVs 365day/ 500 years Miles* 25mph

Needed to drive better than humans with confidence

Fleet of 100 autonomous vehicles

Running for 24 hours a day for 365 days a year at 25mph

Testing for 500 years consecutively

Unity is positioned to scale on the Cloud

Headless Execution

Optimized Runtime

Research Trend Towards E2E Learning

End-to-End Learning of Driving Models from Large-Scale Video Datasets

Huazhe Xu, Yang Gao, +1 author Trevor Darrell •

Published in IEEE Conference on Computer Vision and Pattern... 2016 • DOI: 10.1109/CVPR.2017.376

End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions

Zhengyuan Yang, Yixuan Zhang, +2 authors Jiebo Luo •

Published in 24th International Conference on Pattern... 2018 · DOI: 10.1109/icpr.2018.8546189

Great Need, Few Established Practies

- Industry knows that physical testing does not scale
- Who will implement the sensor models?
- Who will create the environments?
- Unity will walk this road with you
 - ASAM Member
 - Applied research
 - Support, services, and partnerships

Thank you.

#unity3d

