ASAM 2018 / 2019

Dr. Klaus Estenfeld Managing Director ASAM e.V.

June 27, 2019 Tokyo

Association for Standardization of Automation and Measuring Systems

ASAM - Introduction

Compliance Statement

For more than 20 years, ASAM e.V. (Association for Standardization of Automation and Measuring Systems) is actively promoting standardization within the Automotive Industry. Together with its more than 250 members worldwide, the association develops standards that define interfaces and data models for tools used for the development and testing of electronic control units (ECUs) and for the validation of the whole vehicle.

ASAM standards are recommendations, they do not have an impact on regulatory framework.

From the beginning, ASAM has requested and encouraged an open exchange among all stakeholders: manufacturers, suppliers, tool vendors and research institutes. Following this ASAM policy, technical experts from ASAM member companies worldwide commonly develop new standards in project groups. The developed standards are accessible for all interested companies and serve as basis for the development of tools and ECUs within the respective companies worldwide. Tools and products developed based on ASAM standards allow easy integration into existing value chains and seamless data exchange.

ASAM project groups do not define products or take any business decisions preventing competition.

Prof. Dr. Marcus Rieker Chairman of the Board of Directors Dr. Klaus Estenfeld Managing Director https://www.asam.net/home/about-asam/compliance.html

ASAM The Organization

Board of Directors

Voluntary Representatives from International Tier-1s, Tool Vendors and Research Institutes

- Prof. Dr. Frank Köster DLR
- Dr. Ralf Nörenberg HighQSoft GmbH
- Prof. Dr. Marcus Rieker HORIBA Europe GmbH
- Armin Rupalla
 RA Consulting GmbH
- Richard Vreeland
 Cummins Inc.

Technical Steering Committee (TSC)

A Highly Experienced International Team of Experts from Automotive Industry

• AVL LIST GmbH Dr. Gerald Sammer

- BMW AG
 Michael Schwarzbach
- Continental AG
 Helmut Wellnhofer

- Ontinental 3
- dSPACE GmbH
 Dr. Hans-Joachim Rabe
- emotive GmbH
 Dr. Jörg Supke

emotive

- ETAS GmbH Killian Schnellbacher
- National Instruments Corp. Stefan Romainczyk (Speaker)

- Softing GmbH
 Markus Steffelbauer
- Siemens Industry Software GmbH
 Oliver Philipp
- Vector Informatik GmbH
 Dr. Christoph Dallmayr

ASAM Membership

More Than 250 Member Organizations Develop and Apply ASAM Standards

OEMs												Tier-1 Su	ppliers								
	٢		DAIMLER	Ford	<u>GM</u>	() HIND	HONDA The Power of Dreams	JAGUAR	LAND- -ROVER	MAR		AISIN	• A P T I V •	BOSCH	Ontinental 3	Carpins	Delphi Technologies	DENSO			itk
	NISSAN		O POLARIS	Ø	PSA	上汽集团 SAIC MOTOR	SEAT	SKODA	😡 SUBARU	ΤΟΥΟΤΑ		KEĬHIN		mtu		NSK		🚭 unity	Æ	HITACHI Inspire the Next	
VIESMANN		Ø	@ YAMAHA																		
Tool Vendors / Service Providers																					
12 ⁷¹ WONDER	<u>2D</u>			ΑΤΙ	ACONEXT		ADEC			Ares	ALIARO		AMiq	amium	AMS	ANNECY	ANSYS	apicom	O Applied Intuition		
Atos	Automotive Safety	ANN SYSTEMS	AVL 💑	b - plus			Brüel & Kjær 👋	BTC endeddied	canoo [dificit que' cor lagores]	CANCANsystem	ENTRE	Communication rt Technology Systems			CONTROLTEC	CSM 🛞	25 DASSAULT	DERIVE		DEWETRON	digital
(DSA)	dSPACE	DTS INSIGHT	DXC.technology		e-SYNC			83	embeddeers Z	emotive	C Jol	ETAS	FDTech	FEV.	foretellix	FuelCon Teurset Window Avel	FUTAVIS	GAilogic	GAIO	GEMS	GIGATHONIK
OLLWA		Prenscia	HEAD acoustics	HGL	RHighQSoft	Hins	HORIBA		L.C.M. Inc.	Sharing Gandage & Stationing	anian	Îmc		Influx TECHNOLOGY	inno <mark>fas</mark> I.		CONTROL BYSTEMS	IPETRONIK	5 IPG	ISYST	Ž SYSTEM
		Kithara	KPIT	kratzer AUTOMATION	9851, 5687 8 CO	KVASER	LATENTLOGIC	LAUTERBACH		M	AIP Pastors	📣 MathWorks	measurement System Experts	Mechanical Simulation (Carlos text blocks) Carlos text blocks)	MEIDEN	MFP		MICRONOVA Software und Systeme	▲ 三日71-5 ジョンポポる社 MTR. 000-11000000000.00.000	MÜLLER-BBM VibroAkustik Systeme	MATIONAL INSTRUMENTS
NorCom	о№∫оккі		0080	PEAK SOLUTION		PERITEC	pico	PIKETEC	pls	PMSF IT Consulting	C Polytec	PUMSUS Ettoricy through Entry of the	QTronic	*	ป)) red-ant	🥖 ReliaTec	REPLY	Ô	ROUSH	HJ. Schönlitheimer
scienlab	SCSK	SesKion	SGE	SGS	SIBROS	SIEMENS	SIERRA		SKYTECHNOLOGY	sodius	softing	<u>SOHATE</u>	Sontheim 🗥	speedgoat	STAR COOPERATION®	STIEGELE Datensysteme GmbH	Symption	Synchrotek	SURCE Software	CONSULTANCY SERVICES	
D technica		III TENERGY	TESIS	▼ TOYO Corporation	P	tracetronic	Tllech		United Technologies Research Center	VECTOR			Vigem	VIRES	wirtualcitysystems		Weapara	RACE	🚸 WEISANG	whitepine	EX2E
xieworks	Xylon [:]	YOKOGAWA +																			
Universities / Research Institutes																					
				PVRBATH	北京机械设备研究所			Сти		MAKE	Fraunhofer	FZI	GF a <mark>l</mark>		HI//	H L R IS	Jap	IFKM	da ri		JOANNEUM
		Mindmotiv	NCES		C THE OHIO STATE UNIVERSITY	Ostfalia University of Applied Sciences	System×	Technology Arts Sciences TH Köln		HOCHSCHULE TRIER Branch Bower of Aperto Standing	TECHNISCHE UNIVERSITÄT DARMSTADT	U N I K A S S E L V E R S I T A T	🛞 Universität Stuttgart	virtual 💮 vehicle	vti		۲				

Status June 26, 2019

Japanese ASAM Members

Currently 37 Members – 11 more since Regional Meeting Japan 2018

- **OEMs** ٠ NISSAN MOTOR CORPORATION OHINO TOYOTA @YAMAHA HONDA 🐼 SUBARU The Power of Dream **Tier-1 Suppliers** ٠ HITACHI Inspire the Next KEĨHIN DENSO NSK AISIN **Tool Vendors** Communication Art Cechnology Systems DTS INSIGHT GAILOGIC GAIO DXC.technology HORIBA HULINKS ▼東陽テクニカ Symphony SKYTECHNOLOGY YOKOGAWA
 - **Academics**

Status June 27, 2019

Some Highlights (Last Twelve Months)

ASAM actively drives its evolution - inside and outside

- Services for ASAM members worldwide (members in 25 countries) New ASAM Website well received, International Conference 2019, ...
- New Standards Related Activities

New domain "Simulation" established, high interest worldwide, six ASAM OpenX projects about to start, first successful local Concept Project outside Europe, standard development on its way, ...

Next Steps towards Internationalization

Re-vitalization of North American Activities, entry in China, requests from Korea, first ASAM members in Croatia, Slovenia, Romania, Israel, Czech Republic,....

- A Recognized Partner in the Standardization Community Liaison Agreements with ISO, MoU with SAE, AUTOSAR Attendee Agreement, ...
- ASAM Standards used in Non-Automotive Industries (e.g. in aviation)

Common Standardization Agreements ASAM / ISO Existing and planned Liaison Agreements with ISO

Liaison in ISO

Proposal of ISO Central Secretary: A or C

International Organization for Standardization

1.17.2 Different categories of liaisons

1.17.2.1 At the technical committee/subcommittee level (Category A and B liaisons)

The categories of liaisons at the technical committee/subcommittee levels are:

Category A: Organizations that make an effective contribution to the work of the technical committee or subcommittee for questions dealt with by this technical committee or subcommittee. Such organizations are given access to all relevant documentation and are invited to meetings. They may nominate experts to participate in a WG (see 1.12.1).

1.17.2.2 At the working group level (Category C liaisons)

The category of liaisons at the working group level is:

Category C: Organizations that make a technical contribution to and participate actively in the work of a working group. This can include manufacturer associations, commercial associations, industrial consortia, user groups and professional and scientific societies. Liaison organizations shall be multinational (in their objectives and standards development activities) with individual, company or country membership and may be permanent or transient in nature.

Liaison in ISO TC22/SC31

Data communication for vehicle applications

Reasons for Liaison with ISO

- Multiple standards shared between ASAM and ISO (e.g. ODX, GDI and MCD-3 D).
- Some ASAM standards are based upon ISO standards (e.g. OTX-Extensions, CERP, CPX).
- Many ASAM standards are related to other ISO standards (e.g. XCP, FIBEX, ODX).
- → ASAM must know, if relevant standards are going to be changed, i.e. know NWIP^{*}).
- → ASAM may provide comments on NWIPs and/or informs affected members.

Category A liaison in ISO TC22/SC31 "Data communication for vehicle applications"

• Approved on Sep. 11, 2017.

Rights and Responsibilities

- Have access to ISO general documents such as guidelines and templates.
- Have access to the ISO TC22/SC31 file repository.
- Others: tbd.

Topics under ISO TC22/SC31:

- Data buses and protocols
 (including dedicated sensor communication)
- V2X communication (including V2G)
- Diagnostics
- Test protocols
- Interfaces and gateways
 (including those for nomadic devices)
- Data formats
- Standardized data content

Liaison in ISO TC184/SC5

Transfer of ASAM GDI to ISO

- ISO 20242 "Industrial automation and systems integration Service interface for testing applications"
- Category A Liaison Agreement in ISO TC184/SC5

(Interoperability, integration, and architectures for enterprise systems and automation applications)

- ASAM Contact: Prof. Patzke (until 2019), Mr. Bernd Wenzel (from 2020)
- Decision (Dec. 4, 2018): the liaison in ISO TC184/SC5 shall be continued for another 4 years. Then, based on an evaluation of the advantages for ASAM a new discussion regarding continuation should take place.

Liaison in ISO TC22/SC33 WG9

Test scenario of autonomous driving vehicle

Agreement between the partners to go for Category C Liaison in ISO TC22/SC33 WG9

Reasons for Liaison with ISO

 Use synergies between the current ASAM OpenX (ASAM OpenDRIVE/OpenCRG/OpenSCENARIO) standardization activities (represented by the ASAM OpenX Steering Committee) and ISO WG9 WP 4.2 and 4.3 activities (represented by the respective leads)

		WG 9				
		Highway Scenario	General road Scenario			
1. Sc	***General Information for Automated Driving Vehicle Test enarios	Mr. Sun				
2. So	**Engineering Framework for Automated Driving Vehicle Test enarios	Mr. Taniguchi, Mr. Mazzega				
3.' (C	*Structure for Automated Driving Vehicle Test Scenarios omplexity)					
4.	Scenario Generation and Formation					
	4.1. ** Scenario Data Sources Extraction Format	Mr. Mazzega, Mr. Taniguchi	Mr. Zhao			
	4.2. *** Scenario Parameters, Formats and Architectures	Mr. van Driesten, Mr. de Gelder	Mr. van Driesten, Mr. de Gelder			
	4.3. *Scenario Database Requirements	Mr. van Driesten, Mr. de Gelder	Mr. van Driesten, Mr. de Gelder			

- Goal: complementary, not competitive work!
- Provide a common Glossary for Scenario descriptions (as staring point) for ASAM and ISO

Category C Liaison in ISO TC22/SC33 WG9

Test scenario of autonomous driving vehicle

Next Steps

- Short to mid term
 - Define (and agree upon) the workflow between the parties
 - Prepare and sign a Liaison C between ASAM and ISO
 - Formation of ASAM OpenX Steering Committee
 - Set up a regular exchange between the relevant working groups in ASAM and ISO
- Mid to long term
 - Evaluate further options (e.g. Open Simulation Interface (OSI) and ISO 23150 activities) after the official transfer of OSI to ASAM is concluded

•

Standardization at ASAM Portfolio, Process, Support

ASAM Standards Portfolio

A New Domain "Simulation" was Established in 2018

Release and Project Roadmap for 2019

Projects Currently in Acquisition:

- HPC-Diagnostics (Proposal WS: on June 5)
- OpenCRG
- Evaluation and Selection of an OpenDRIVE Reference Visualization and Checker Tool
- Open Simulation Interface (OSI)
- Safety Concept Description Language (SCDL)

(www.asam.net/standards/; www.asam.net/active-projects/projects/)

ASAM Development Process for Standards

From First Ideas to New Standards

ASAM Offers a Complete Environment for Standardization

Professionalism & Culture

- Proven processes for standards development and long-term maintenance.
- Time-to-Market: Low process overhead. Fast project turn-around times.
- Legitimacy: Decisions are made by elected industry representatives.
- Neutrality: The ASAM Office guarantees unbiased support for every company (big or small).
- Non-Profit Paradigm: Our goal is to provide best-in-class technologies in E/E-development.

Project Budget

- Membership fees are invested in technical projects (ROI can be higher than 100%, if a member uses ASAM a lot).
- ASAM pays for project service providers, e.g. standard writing, code development, prototyping, benchmarking, etc.
- Relieve experts from routine work. Let them focus on requirements, concept development and reviews.

Tools

- IT Infrastructure: Bugzilla, SVN, Adobe Shared Review.
- Communication Infrastructure: WebEx, Video Conferencing.

Network

- Large, worldwide network of experts in the Automotive E/E development and in the simulation domain.
- Collaboration with ISO, SAE, AUTOSAR, other SDOs*) and government agencies.

Worldwide Marketing & Distribution

ASAM Home Page

- Specifically geared towards standard promotion and distribution.
- Download of standards for members. Sales for non-members.
- Project information.
- Technical Wiki for standards.

Regional Membership Activities

• Regular meetings in EU, US and JP.

Public Relations

- Newsletter.
- Solutions guide.
- Trade show participation in emerging markets (JSAE, ...).

Training & Support

- Technical support for all standards (support@asam.net).
- Overview training on ASAM standard portfolio.
- Update training on new releases (upon request).

A New ASAM Domain for Highly Automated Driving ASAM OpenX Standards for Driving and Traffic Simulation

New Domain at ASAM: Simulation

Simulation

- Standards for simulation model data exchange.
- High demand for standards for new type of simulation: Driving and Traffic Simulators.
- Public specs driven by tool vendors have emerged in recent years.
- Specs have been transferred to ASAM to:
 - Be hosted by a neutral professional organization
 - Become an official standard for the industry
 - Guarantee long-term and professional further development
- Current projects transferred to ASAM:
 - OpenDRIVE
 - OpenCRG
 - OpenSCENARIO
 - Open Simulaton Interface (OSI) (in transfer)

Positioning of OpenX Standards

Static Content

Dynamic Content

• Motivation

- Exchange of data between creation tools (e.g. road network editors) and simulators.
- Use of the data in simulators from different vendors.
- Use with other public standards.

First Steps – ASAM OpenX Kick-Off and Proposal Workshops

High Interest from all over the World

OpenDRIVE/OpenCRG

• 28.09.2018	Open* Standards Training for Japanese Organizations	Tokyo
• 09.+10.10.2018	Kick-Off Workshop ASAM OpenDRIVE (incl. ASAM OpenCRG)	Höhenkirchen
• 15.+16.01.2019	Proposal Workshop ASAM OpenDRIVE (incl. ASAM OpenCRG)	Höhenkirchen
OpenSCENARIO		
• 17.09.2018	Use Case and Requirements Workshop	Höhenkirchen
17.09.201813.11.2018	Use Case and Requirements Workshop Kick-Off Workshop ASAM OpenSCENARIO	Höhenkirchen Kaiserslautern

OpenDrive

Transfer of OpenDRIVE® to ASAM

Contract Signed at Driving Simulation Conference 2018, Juan les Pins

Open Dynamic Road Information for Vehicle Environment

OpenDRIVE

- OpenDRIVE: <u>Open Dynamic Road Information for Vehicle Environment</u>
- File format for the description of road networks.
- Initiative started in 2005 by Daimler and VIRES.
- Used for simulators in the area of
 - Drive simulation
 - Traffic simulation
 - Sensor simulation
- Based upon XML and a hierarchical data model.
- Basic elements:
 - Roads
 - Junctions
 - Controller
- Not covered: entities acting on or interacting with the road network.

Principal Design Pattern for Roads

1: Create Reference Line

• Primitives

• Line

• Arc

Spiral

• Poly3

2: Add Lanes Along the Reference Line

Elements:

- Width
- Link
- Material
- Roadmarks

3: Add Features

- Sign
- Signal
- Object
- Elevation

Junctions

- Elements:
- Link to lane
- Priority
- Group

OpenCRG

OpenCRG

- OpenCRG: <u>Open Curved Regular Grid</u>
- File format and source-code for the **detailed description of road surfaces**.
- OpenCRG initiative was started in 2008 by Daimler together with AUDI, BMW, Porsche, and Volkswagen.
- The file format of OpenCRG is integrated in OpenDRIVE.
- Used for the description of patches of road surfaces in a very detailed manner, so that it can be used for:
 - Tire simulation
 - Vibration simulation
 - Driving simulation, etc.
- Source-code included:
 - C API for data read/write and evaluation
 - MATLAB API for data read/write, evaluation, generation, modification and visualization
 - Library of sample data

Further Development of OpenCRG

Results^{*}) of pre-standardization meetings with industry-experts:

- Features
- F001: Georeferencing
- F002: Multiple Data Layers

Other Topics

• Further Development of the API Source Code

Roadmap*)

*) tentative, as meetings are on-going

OpenScenario

What is OpenScenario?

Motivation

- ADAS functionality requires extensive testing in all sorts of situations
- A situation or scenario consists of two types of content
- For static content we have the lower level standards:
 - OpenDRIVE
 - OpenCRG
- Requirement: concisely describe a scenario by defining dynamic content and linking it to static content

OpenSCENARIO

- File format for the description of dynamic content in driving simulation applications.
- Currently: focus on drive maneuver description.
- Project in an early stage (started in 2014).
- Used for drive simulators.
- Description elements:
 - Maneuver
 (complex maneuver descriptions that involve multiple cars)
 - Trajectory (polyline, clothoid)
 - Vehicle (geometry, type, axes, performance)
 - Driver (appearance)
 - Environment (weather, time of day, road condition)
- Based upon XML.

Principal Design Pattern for Maneuvers

Open Simulation Interface (OSI)

OSI

- OSI: <u>Open Simulation Interface</u>
- A generic interface for the environment perception of automated driving functions in virtual scenarios.
- Initiated by BMW and Technical University of Munich (TUM).
- Contains an object-based environment description using message formats based on Google Protocol Buffers for two types of data:
 - GroundTruth: gives an exact view on the simulated objects in a global coordinate system.
 - SensorData: describes the objects in the reference frame of a sensor for environmental perception.

• In preparation: code of a run-time environment based on the Open Simulation Interface, including the conversions between GroundTruth and SensorData messages.

ASAM OpenX Projects: Status

Projects Defined for ASAM OpenDRIVE and ASAM OpenSCENARIO

Standard Development Projects

- Standard Transfer Project: Write missing chapters, clarifications on semantics and syntax, formal data model.
- Standard Further Development: New feature concepts, implementation of new concepts into the standard.

Concept Projects

• Concept Development: New feature concepts.

Implementation Project

- **Tool Evaluation:** Determine evaluation criteria, evaluate & choose.
- Tool Transfer: Requirements, SW implementation, beta testing, release.
- Tool Further Development: ditto.

Parallel Concept Development

Parallel standard and concept development have worked out best in similar situations

- Faster time-to-marked.
- Less coordination efford between groups.
- But: Double work effort per month for participating companies due to parallel project groups.

ASAM OpenX: Status

- Two active projects for each of ASAM OpenDRIVE & ASAM OpenSCENARIO:
 - Transfer Project: move the content of existing documentation to ASAM style as a base for all further ongoing developments; Includes consolidation & creation of user & style guides; No development activity!
 Significant improvement of document quality!
 - Concept Project: address current and upcoming requirements to the standards as obtained from the full development process of autonomous vehicles and the full complexity of real-world scenarios, including complex inner-city traffic.
 - Conceptual development activity in subgroups for individual features
 - Regular Working Group (WG) meetings via Webex, organized by WG leaders
 - Regular face-to-face meetings (3 each to date)
- Implementation → Project enrollment open for a visualization & reference checker tool for OpenDrive 10+ Interested parties, project will likely take place - <u>Link</u>
 Deadline 2nd July 2019
- ASAM OpenCRG → Project enrollment open for Transfer and further development Projects Needs more participation! - <u>Link</u>
 Deadline: 2nd July 2019

ASAM OpenDRIVE Concept

Working Groups

	ASAM OpenDRIVE Concept Project Working Groups									
Name & _ead	Junction Model	Environment Representation	Road Geometry Models	International Signs Model	Area Model					
Description	Revise the junction model approach to simplify description of complex junctions.	Provide an approach for describing the environment around a road network (e.g. areas between lanes).	Extend the road model to describe roads with further model elements (e.g. DLM, polylines, Bezier curves).	Description of traffic signs, traffic lights, etc Provision of parameters to translate between all major jurisdictions.	Investigate the feasibility of an area-based modelling approach as an alternative to the current ODR implementation of line segments.					
Participants (companies)	 3D Mapping Solutions Daimler AG dSpace GmbH IPG Automotive GmbH fka GmbH BMW AG Siemens TESIS GmbH Continental AG VIRES 	 Daimler AG Mitsubishi Precision BMW AG Rheinmetall Electronics 3D Mapping Solutions Mazda Motor e-Sync virtualcitySYSTEMS 	 fka RA Consulting Vires TESIS 3D Mapping Solutions Continental AG Honda R&D IPG Automotive GmbH 	 ASAM e.V. 3D Mapping Solutions CATS e-Sync Honda R&D Mazda Motor Toyota Motor Mitsubishi Precision 	 virtualcitySYSTEMS Daimler AG dSpace fka VIRES Rheinmetall Electronics BMW AG Mitsubishi Precision 3D Mapping Solutions Continental AG Volkswagen AG 					

ASAM OpenDRIVE Concept

Concept Projects

- Next project meeting: 8th and 9th of October 2019 at Daimler AG in Sindelfingen, Germany
- WP01 & WP05 group meeting: 2nd & 3rd July at VIRES in Bad Aibling, Germany

Current Activities & Discussions in Working Groups

v1.7 – Feature improvements, Quality Improvements

- Modelling of road sections Current implementation can lead to gaps in the representation of road segments. The discussion is currently focused on alternative representations for road segments, e.g. not as lines but as splines
- Technical documentation service provider found and to start at beginning of January 2020

v2.0 – Long term changes to meet evolving demand of the AV industry, new features

- Area concept model Initial investigation into its feasibility and applicability to the OpenDRIVE standard
- Levels of detail Performance consideration Allow for the selection of various levels of details of objects, selected as required
- Layer approach Current OpenDRIVE is based on a single layer of information this would divide the standard into multiple layers of information – e.g. a logical road layer, static road objects, environment objects, etc.
- Junctions Current implementation is not user-friendly for creating complex junctions alternative possibilities are being investigated

ASAM OpenDRIVE Roadmap

ASAM OpenSCENARIO Concept

Working Groups

			ASAM	AM OpenScenario Concept Project Working Groups								
Name & Lead	Architecture	Glossary & Notations	Parameters & constraint handling	Measurements, grading & success	Scenario creation methods	Driver, traffic & vehicle models	Interface to topology & roads	Manoeuvre Description				
Description	Define a global architecture based on requirements of other WGs	Define the vocabulary needed to address each OSC requirement/ feature.	Methods for describing parameter distributions and variations	Methodology for determining the performance of a scenario simulation, i.e. pass/fail?	Identify requirements based on different approaches to scenario creation	Define a data interface to the above models	Define a data model with an abstracted interface to various road/topology formats	Define an approach for expressing the dynamic behavior of a scenario				
Participants (companies)	 PMSF IT Consulting ZF Foretellix Aliaro Rheinmetall Electronics Vector Informatik AKKA IASYS GOD University of Warwick HLRS 	 HORIBA CP Catapult ZF Aptiv M&K Audi Volvo IRT Systemx U of Warwick 	 AVL MicroNova RA Consulting EMOTIVE MSC Software IKA Aachen 	 RA Consulting PMSF IT Consulting Univ. of Kempten BTC systems Catapult CATARC ZF Siemens 	 Volvo CATS AKKA Vires Jaguar / Landrover IASYS GOD Bosch Continental TTDC Audi Symphony RAC Univ.Warwick Mitsubishi 	 Daimler AG RA Consult. FZI BMW Vector SAIC Motor IPG Volvo ZF Rheinmetall Electronics TU Dresden Ansys 	 dSPACE Nvidia Volvo ZF Rheinmetall Electronics Symphony Univ.Warwick 	 Univ.Warwick OpelVauxhall BTC ES FZI Nvidia IPG ZF Aptiv M&K Continental Vector IRTSystemsX TÜV SÜD HLRS Jaguar Land Rover 				

ASAM OpenSCENARIO Concept

Concept Projects

Next project meeting: 10th and 11th of July 2019 at Vector Informatik, Germany

Current Activities & Discussions in Working Groups

v2.0 - should serve as the format and mechanism to supply dynamic content and functional behavior to multiple testing and execution platforms

- Primary focus: Review of currently available tools, languages & approaches. What can be used as a base for the various WGs?
- Glossary Clarification of basic naming conventions What is a scenario, an actor, an event?
- Parametrization What is a parameter and how is it exposed?
- Measurements How to capture the expected accuracy/quality of measurements in a scenario to determine pass/fail criteria?
- Models Defining the requirements of the interface to the road, driver and dynamics models

ASAM OpenSCENARIO Roadmap – Parallel Concept Development

ASAM OpenX Steering Committee

Concept discussed internally at ASAM - to be implemented soon

- Operative directional decisions
- Clarification of project requirements
 - E.g. summarize and clearly document target use cases of OpenX standards
- Alignment & compatibility of individual projects to use-cases
- Homogenize approach to standard extensibility
- Preparation & escalation of decisions for TSC
- Self moderation/adjudication
- Start: end of August

ASAM OpenX Standards

Trademarks are registered in Europe, other counties will follow

ASAM Website www.asam.net

Comprehensive Information about ASAM – Accessible for Everybody

ASAM International Conference 2019

December 10+11, 2019

Autonomous Driving – Standardized Virtual Development as a Key to Future Mobility

- Location: Dresden, Congress Center
- Concept: 2 days conference incl. exhibition
- Organization: In cooperation with Saxon State Ministry of Economic Affairs

- Presentations selected
- Agenda in preparation
- Invitation available soon

Thank you!

Dr. Klaus Estenfeld Managing Director, ASAM e.V.

Phone: +49 151 6463 1204 Email: klaus.estenfeld@asam.net For more information on ASAM visit

www.asam.net

