
1

ARTI (ASAM/AUTOSAR Run-Time Interface)

A brief introduction to ARTI
by Peter Gliwa, GLIWA GmbH
And Rudi Dienstbeck, Lauterbach GmbH

2

AUTOSAR and timing

► Timing Extensions

”TIMEX”; since AUTOSAR 4.0

→ Allow specification of timing requirements

► Timing Analysis

First released with 4.1.3

→ Use-cases based guide to timing

► AUTOSAR OS

Contains timing protection mechanisms

→ As of 4.2.2: Execution-, Locking- and

Inter-Arrival Time Protection

► ARTI (AUTOSAR/ASAM Run-Time Interface)

not a standard yet (probably in 2017)

→more details later

T
im

in
g
 A

n
a

ly
s
is

 d
o

c
u

m
e
n
t

3

Other standards

► ORTI: OSEK Real-Time Interface: brings OS awareness to debuggers/tracers

► outdated (“OSEK not AUTOSAR”)

► no support of tracing runnables, no multi-core support

► only running state of TASKs can be captured

► Other open trace formats currently not widely used in automotive

► CTF: common trace format, rather common for high-performance computing

► LTTng: open source tracing framework for Linux

► BTF: “best trace format” as defined by the AMALTHEA research project

► Vendor specific formats

► quite a few different formats

► often based on older standards like ORTI

► not AUTOSAR or ASAM standardised

4

ARTI: ASAM Run-Time Interface

Why another standard?

► Non-standardized interfaces require costly individual adaptation. This is true for

► vendor-specific, non standardized trace formats and

► OS-specific interfaces for instrumentation-based tracing.

► No existing standard supports

► Non-OS AUTOSAR events (e.g. RTE)

► TIMEX

► AUTOSAR Aadaptive Platform

► Non-AUTOSAR Systems

► Strong demand from OEMs and Suppliers for a unified approach.

5

ARTI: ASAM Run-Time Interface

► A new ASAM Project

“ARTI – ASAM Run-Time Interface”

► It aims at creating a new standard which becomes available as soon as the project successfully

completes.

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ARTI – ASAM Run-Time Interface

ORTI
(OS↔HW Debugger/

Tracer Interface)

6

ARTI goals

► Debugging – halting a system, either as a whole or in parts, for the purpose of

► inspecting the contents of the system in a frozen state

► single stepping, setting breakpoints, starting and stopping in C or Assembly code

► Tracing – collecting run-time information over a certain period of time

► either as a pure software solution, or with hardware assistance

► may include processor instruction trace, OS scheduling trace, and/or pure data trace

► including time-stamping for further timing analysis

► Timing Measurement – capturing of timing information

► by instrumentation, e.g. via Pre-/PostTaskHooks or other hooks or callouts or

► by dedicated hardware support, e.g. hardware performance counters

► does not stop execution

► Profiling – gaining timing parameters/timing statistics

► of functions, tasks, runnables, modules etc.

► possibly with minimum/maximum/average statistics

► possibly with worst case analysis

► possibly calculated out of trace data, repeated snapshots or Timing Measurement

7

ARTI aspects to consider

► ARTI shall support

► Multi-core

► Runnables

► Instrumentation-based tracing and measurement solutions

► The actual AUTOSAR-OS implementation

► TIMEX

► debugging and tracing beyond ECU level, e.g. end-to-end timing taking several ECUs and buses

into account

► AP (adaptive platform)

► Non-AUTOSAR systems

8

ARTI: who is behind it?

AUTOSAR/ OS vendors Timing Tool vendors

Debug/Trace Tool vendors Users, AUTOSAR experts

9

Relevance for the market

► Most embedded applications come with

► Timing requirements

► The need to understand and debug the software

► The need for optimization

► These aspects are not limited to automotive

► Important automotive embedded software players are involved already

► Lauterbach -is the world’s #1 debugger vendor

► Elektrobit, ETAS and Vector cover >95% of the automotive RTOS market

► BOSCH and Conti are among the biggest automotive tier-1s in the world

► The ARTI tool vendors strive for more relevance in other markets

10

ARTI Dataflow

11

Deliverables

► Specification

► Explanatory aspects

► UML models

► Examples

► Schema files

► Prototype(s) demonstrating the interfaces and tools in (inter-) action

12

Standardization approach

► Relation to AUTOSAR

► ASAM ARTI smoothly interfaces to AUTOSAR ARTI (cf. A2L)

► ASAM ARTI is independent of AUTOSAR ARTI, can “live” without AUTOSAR

► Within AUTOSAR ARTI, already two subgroups exist

► ARTI Hooks and ARXML

→ in a future set-up this becomes the AUTOSAR ARTI

► ARTI data exchange formats

→ in a future set-up this becomes the ASAM ARTI

13

ARTI: current status

► AUTOSAR-ARTI first version specified in AUTOSAR 4.4

► Currently waiting for 4.4 implementation in OS

► Further planning:

► ASAM-ARTI Project Start: February 2019

► ASAM-ARTI Project Release: December 2019

14

ARTI: reference platform

► Demo platform for automotive multi-core SW development

► Infineon AURIX TC27x

► GLIWA ATdemo (TC275TP, production device):

Multi-core demo software incl. development environment

allowing to build, flash and analyze application in minutes

► Infineon TriBoard (TC277TF, emulation device):

Second evaluation platform allowing MCDS hardware-based

tracing

► Both platforms are code compatible

15

ARTI: details on ORTI (one of the building blocks)

► ORTI (OSEK Run-Time Interface)

► ORTI File informs the Debug/Trace Tool about:

Structure of the OS (Tasks, ISR2, Stacks, SchedulingTables,…)

OS Status Update Signaling of the OS, e.g. which Variables are used for Signaling, Encoding.

► ORTI contains symbolic Information

Address Information for Symbols obtained from ELF File.

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ORTI
(OS↔HW Debugger/

Tracer Interface)

ARTI – ASAM Run-Time Interface

16

ARTI: details on ORTI (example)

► Example: Signaling of currently running Task and ISR2 on Core 0.

OS TC277

{

RUNNINGTASK[0] = "OS_kernelArray[0].taskCurrent";

RUNNINGISR2[0] = "OS_kernelArray[0].isrCurrent";

…

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ORTI
(OS↔HW Debugger/

Tracer Interface)

ARTI – ASAM Run-Time Interface

17

ARTI: details on OT1 (one of the building blocks)

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ORTI
(OS↔HW Debugger/

Tracer Interface)

► Open data exchange format for
► System configuration (tasks, priorities,

runnables, etc. or buses, messages, etc.)

► Traces (log of e.g. scheduling related events)

► Timing information (core execution time,
response times, etc.)

► Timing requirements (e.g. max. allowed
response times)

► Any tool can provide/retrieve information

ARTI – ASAM Run-Time Interface

18

ARTI: details on OStimHooks (one of the building blocks)

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ORTI
(OS↔HW Debugger/

Tracer Interface)

ARTI – ASAM Run-Time Interface

► Standard defined in 2010 as an interface between the

OS and any Timing Measurement or scheduling Tracing

tool.

► The OS is required to define macros/callouts for

► TASKs: activation, failed activation, start and

termination

► ISRs: start, end

► Adapted by few OS vendors

OS.c

MapOStim

Hooks.h

ToolXYZ.c

call macro when a
task is activated,

started, etc.

map macros to
tool specific

handlers

Handle task
activation, start,

etc.

19

ARTI: details on New Features

► Add not only OS awareness to tracing but system awareness

► RTE events/communication

► SW-C related information/filtering

► Support end-to-end timing, i.e. synchronize traces of several buses/ECUs

► Support AUTOSAR AP (“Adaptive Platform”, the future standard for high performance ECUs and

more flexibility, e.g. dynamic task creation at run-time)

OT1
(model, timing

parameters, timing-
req’ments, traces)

OStimHooks
(OS ↔SW Timing

Measurement/ SW
Tracing Interface

New Features
RTE Tracing, End-to-end

tracing, AUTOSAR AP,
etc.

ORTI
(OS↔HW Debugger/

Tracer Interface)

ARTI – ASAM Run-Time Interface

20

Thank you

► Any questions, remarks?

Please contact peter.gliwa@gliwa.com or rudi.dienstbeck@lauterbach.com

mailto:peter.gliwa@gliwa.com

21

Backup

22

ARTI Workflow

