
Verifying AVs, and other stuff

Yoav Hollander - Founder and CTO, Foretellix
blog.foretellix.com

A view on some important extensions to the standard

OpenSCENARIO ASAM workshop – 13-Nov-2018

Introduction
• The OpenSCENARIO work so far has taken us a significant way forward

• The challenge for this standard is huge and important
• The current list of requirements is really good (and ambitious)
• And I expect the requirements to grow

• Today I’ll discuss just the requirements for making scenarios specifications

Clear, Composable, Measurable and Portable

• For each, I’ll connect it to current requirements, and suggest a direction

© 2018 Foretellix| 2

Clear
• Scenarios should be easy to read, write and debug

• How
• Use a powerful language with clear semantics
• Allow for abstraction and extensibility
• Create a library of basic building blocks
• Merge graphic input into the language
• Use constraints to make descriptions concise (next slide)

• Reference (to the list of features and requirements):
• F008: High-Level Maneuver Descriptions: Suggests a DSL as an option
• R012: The description format shall be suitable for manual scenario creation in text editors
• Section 5.4: Test specifications

© 2018 Foretellix| 3

Clear (making it concise)
• Write as little as possible - let the machine do the rest

• Abstract scenarios should produce many different, interesting instances,
exposing unconsidered combinations

• Writing everything explicitly is not manageable – it does not scale

• How
• Use constraints to express parameter relations / restrictions

• Constraints have multi-directional semantics
• Do not enumerate combinations – full values will appear only in concrete scenario

• Use default values when appropriate
• Allow for both random and deterministic modes (see later)

• Reference
• F007: Parameter Stochastics: … The variation details shall become part of the scenario description
• F010: Automatic parameter calculation: … specify mathematical formulas to calculate parameters
• R002: Define elements as 'mandatory' only when absolutely needed

© 2018 Foretellix| 4

Clear (example)

© 2018 Foretellix| 5

AV

scenario ego::cut_in_and_slow is {
car1: car; // The other car
side: av_side; // Car1 starts on this side of the ego
stretch: stretch {.lanes >= 2; .length in [120..250] * meter};

do serial {

get_ahead: phase(duration: in [1..5] * second) {
p1_ego: ego_car.drive {+drive_on(stretch)};
p1_car1: car1.drive {

+behind(ego_car, at: start);
+ahead_of(ego_car, [5..10] * meter, at: end);
+on_side_of(ego_car, side);
+faster_than(ego_car); }};

change_lane: phase(duration: in [1..5] * second) {
p2_ego: ego_car.drive;
p2_car1: car1.drive {+change_to_lane_of(ego_car); }};

slow: phase(duration: in [1..5] * second) {
p3_ego: ego_car.drive;
p3_car1: car1.drive {+slow_down([10..15] * kph); }};

};

Composable
• Should be easily to create complex scenarios from simpler ones

• Without planning all required “knobs”
• Especially important for finding complex edge cases

• How
• Have general composition operators: serial, parallel, phase, mix, …
• Have an easy way to activate and constrain sub-scenarios
• Take into account explicit and implicit constraints
• Support extensibility

• Reference
• F008: High-Level Maneuver Descriptions: … high-level descriptions … contain key-scenarios such

as "cut-in“, “"left turn across path"
• R010: Synchronize maneuvers

© 2018 Foretellix| 6

Composable (example)

© 2018 Foretellix| 7

scenario ego::mix_multi is {

do mix {
c: cut_in_and_slow {.car1.kind == truck};
i: interceptor_at_yield {.int_to_ego_offset in [-1..1]};
f: sensor_failure;

};

c_to_i_offset: int {it in [-2..2] * second};
f_to_i_offset: int {it in [-2..2] * second};

+synchronize(c.change_lane, i.e_traverse.enter, c_to_i_offset);
+synchronize(f, i.e_traverse.enter, f_to_i_offset);

};

Measurable
• Need a common way to measure

• Which scenarios happened and with what parameters
• Whether the ego vehicle performed correctly
• Consistently across simulators / other execution platforms

• How
• Scenario descriptions should have a dual interpretation

• Active: How to (try to) cause this scenario
• Passive: How to monitor that this scenario has happened (and extract parameter values)

• Use functional coverage to define / analyze what happened

• Reference
• R007: Define simulation results reproducibility
• Section 5.6: … high probability that different simulators produce different simulation results

from the same scenario descriptions … it is proposed to develop reference implementations

© 2018 Foretellix| 8

Measurable (example)

© 2018 Foretellix| 9

scenario ego::mix_multi is {

do mix {
c: cut_in_and_slow {.car1.kind == truck};
i: interceptor_at_yield {.int_to_ego_offset in [-1..1]};
f: sensor_failure;

};

c_to_i_offset: int {it in [-2..2] * second};
f_to_i_offset: int {it in [-2..2] * second};

+synchronize(c.change_lane, i.e_traverse.enter, c_to_i_offset);
+synchronize(f, i.e_traverse.enter, f_to_i_offset);

};

Portable
• The same scenario definition should be portable across

• Execution platforms: Specific simulators, specific test tracks, …
• Test configurations: Sensor-bypass vs. full sensor simulation, …
• ODDs: Adapt to operating conditions, country rules and conventions, …
• Stakeholders: OEMs, subsystem creators, regulators, …
• Usage modes: Fully-random vs. deterministic, …

• How
• Enabled by multiple features (constraints, composability, passive/active interpretation and more)

• Example: Portability across random-vs-deterministic usage modes
• “Infinity minus mode”: Parameters get any random value unless explicitly prohibited (by constraints)

• For thorough verification and finding edge-case bugs
• “Deterministic mode”: Parameters get default values unless explicitly requested

• For test tracks, go-no-go tests, perhaps regulation-requested tests

• Example: Portability across execution platforms
• Portability for street driving enabled by passive (monitoring) interpretation of scenarios
• Portability across simulators enabled by default values, adaptation via constraints and more

© 2018 Foretellix| 10

Summary
• This is a crucial (and very ambitious) standardization effort

• And there are some inevitable follow-on requirements

• I talked about a subset of the requirements, to make scenarios

Clear, Composable, Measurable and Portable

• We are looking forward to working with you
• To create a high-quality open scenario standard for the industry
• In a reasonable timeframe

• Thank you

© 2018 Foretellix| 11 blog.foretellix.com

	Verifying AVs, and other stuff
	Introduction
	Clear
	Clear (making it concise)
	Clear (example)
	Composable
	Composable (example)
	Measurable
	Measurable (example)
	Portable
	Summary

