SCDL introduction

@ASAM WS in Munich
20180905

SCN-SG
Shuhei YAMASHITA (DNV GL)
Plot

- What is SCDL?
- Why we need SCDL?
- Grammar example of SCDL
What is SCDL?
What is SCDL?

- Safety Concept Description Language

- Modeling language for SR / SC
 - following ISO 26262 original intention
 - considering context and semantics of the standard

- Especially focusing on key factors such as SR, SC, Element, ASIL, dependency and interaction between SRs, decomposition, FFI and so on.

- Characterized with function block diagram base graphical expression

SR : Safety Requirement
SC : Safety Concept
FFI : Freedom From Interference

@ 2018 SCN-SG
What is SCDL?

- SCDL specification is open to public on the SCN-SG web site.
- SCN-SG has been studying grammar of SCDL, its use-cases, meta-models and other topics on a voluntary basis since 2015.
Why we need SCDL?
Why we need SCDL?

- ISO 26262 requires Semi formal notation for SR specification especially for higher ASIL: C & D with ++. (e.g. Part8-6)

Table 1 — Specifying safety requirements Methods

<table>
<thead>
<tr>
<th></th>
<th>ASIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1a Informal notations for requirements specification</td>
<td>++</td>
</tr>
<tr>
<td>1b Semi-formal notations for requirements specification</td>
<td>+</td>
</tr>
<tr>
<td>1c Formal notations for requirements specification</td>
<td>+</td>
</tr>
</tbody>
</table>

SR : Safety Requirement
Why we need SCDL?

What is semi formal notation in the context of the standard?

From ISO 26262 Part 1:

1.117 semi-formal notation
description technique whose syntax is completely defined but whose semantics definition can be incomplete
EXAMPLE System Analysis and Design Techniques (SADT); Unified Modeling Language (UML).

1.118 semi-formal verification
verification (1.137) that is based on a description given in semi-formal notation (1.117)
EXAMPLE Use of test vectors generated from a semi-formal model to test that the system (1.129) behaviour matches the model.
Why we need SCDL?

- In short:

<table>
<thead>
<tr>
<th>method</th>
<th>syntax</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal notation [1.63]</td>
<td>definition can be incomplete</td>
<td>definition can be incomplete</td>
</tr>
<tr>
<td>Semiformal notation [1.117]</td>
<td>completely defined</td>
<td>definition can be incomplete</td>
</tr>
<tr>
<td>Formal notation [1.47]</td>
<td>completely defined</td>
<td>completely defined</td>
</tr>
</tbody>
</table>
Why we need SCDL?

That’s why many safety engineers have been trying to use SysML or other existing general purpose languages.

- Consequences were unfortunate: usage of general purpose languages creates various expression even for very simple concept.

- This forces many safety engineers to tolerate unnecessary additional work load.

→ Came up with an idea of safety concept oriented language which can help effective and efficient functional safety development.

SysML : System Modeling Language
Why we need SCDL?

SCDL made semantics complete:

<table>
<thead>
<tr>
<th>method</th>
<th>syntax</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal notation [1.63]</td>
<td>definition can be incomplete</td>
<td>definition can be incomplete</td>
</tr>
<tr>
<td>‘General purpose’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiformal notation [1.117]</td>
<td>completely defined</td>
<td>definition can be incomplete</td>
</tr>
<tr>
<td>Formal notation [1.47]</td>
<td>completely defined</td>
<td>completely defined</td>
</tr>
</tbody>
</table>

‘SC oriented’

SCDL as semiformal notation

<table>
<thead>
<tr>
<th>Completely defined</th>
<th>Completely defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>(with a metamodel)</td>
<td></td>
</tr>
</tbody>
</table>

SC : Safety Concept
Grammar example of SCDL
Grammar Example of SCDL

SysML allows following all combinations for 'SR allocation on Element'.

SysML : System Modeling Language
SR : Safety Requirement
Grammar Example of SCDL

A variety of ways for SC expression can happen easily.

SC : Safety Concept
SCDL chose only one expression for ‘SR allocation on Element’.

SR : Safety Requirement

© 2018 SCN-SG
Grammar Example of SCDL

Typical expression for SC based on Function Block Diagram before SCDL

SCDL could simplify SC expression.

SC : Safety Concept
SR : Safety Requirement

SCDL could simplify SC expression.
Grammar Example of SCDL

Do not connect elements each other with an arrow.

Connect their requirements.
Grammar Example of SCDL

Do not cross the element boundary with the requirement. (to keep the requirements’ granularity appropriate)
Grammar Example of SCDL

Do not give multiple output to a single requirement.
(to keep the requirements appropriately atomic)
Grammar Example of SCDL

Do not cross any element boundary line with another Element.
Do not divide one element into multiple elements.
A place holder for ASIL is defined for both Element and SR.

SR : Safety Requirement
Grammar Example of SCDL

Expression for SR structure of SM is following decomposition logic perfectly:

- Interactions among SRs (e.g.; Detection & Control)
- Pairs of redundant SR groups (DCMP001 = IF001 + SM001)
- Independence requirements (NFSR0030; floating)

SR: Safety Requirement
SM: Safety Mechanism
NFSR: Non Functional SR
Grammar Example of SCDL

Example of results of decomposition: The diagram indicates SRs allocation on Elements including independence requirement.
Grammar Example of SCDL

FFI requirement expression following 'Criteria for Coexistence'.
Grammar Example of SCDL

A bridge symbol between two input block arrow stands for OT link. e.g. a mechanical link for two redundant sensors.

OT : Other Technology
A pair of star symbols is used to stand for ‘External Plant’. e.g. Vehicle, Engine, Motor
Q & A