VECTOR >

Software Debugging over XCP:
Effectively Debugging ECUs in the Field

ASAM Technical Seminar 2018

V1.0 | 2018-06-06

VECTOR >
Agenda

» Motivation

» Key Features of the Standard

» The Standard from a Debugger Supplier’s Perspective
» Live Demo

VECTOR >
The Roots of XCP

As successor of the CAN Calibration Protocol (CCP) the
Universal Measurement and Calibration Protocol (XCP) is primarily used for

» Measurement: acquisition of values of internal variables of an ECU
» Calibration: adjustment of internal variables

XCP is designed as a two layer protocol
XCP Protocol Layer

» Unique protocol layer

» Transport layer: support for different XCP | XCP| | XCP| | XCP| | XCP
transport media/busses on on on on on
CAN | FLX | | ETH Sx| USB

VECTOR >

Motivation

MC and DBG typically rely on the same target debug interface for ECU access
» Switching between MC-HW and Debug Probe is cumbersome
» Mechanical setup might even prevent Debug Probe access to ECU

Data acquisition and calibration (MC) and software debugging (DBG)
are essential techniques used during all stages of ECU development

» Techniques have typically been used apart in the past
» Demand of concurrent use in future

VECTOR >
Switching of ECU Debug Signals

POD
MC Tool XCP on Ethernet XCP Slave
ECU IO
\ ECU
Debug
Debugger Brobe /
PC based JTAG, DAP, IO-Pins, ... MC — Measurement and
Calibration

Limitations

» Hardware-based arbitration mechanisms lack semantical information of the
arbitration request

» Limits interoperability, system performance and usability

» POD encapsulated within ECU housing
» Debug Probe unable to access ECU

Partitioned MC System

XCP on Ethernet

Base Module

XCP Slave

Propriet.
Protocol

X

MC Tool
Debug
Debugger Probe
PC based MC — Mea_sure_ment and
Calibration
Limitations

JTAG, DAP, I10-Pins, ...

VECTOR >

POD

Propriet.
Protocol

ECU 10

ECU

» Proprietary protocol used for communication between Base Module
and POD prevents relay of Debug Probe signals

BroadR-Reach Tool Access

VECTOR >

ECU
MC Tool BroadR-Reach (XCP on ETH) POD
XCP Slave
uC
Debug HCIO =1
Debugger Probe %(
PC based MC—Measurement and JTAG, DAP, I0-Pins, ...
Calibration
Limitations

» No interface option to connect Debug Probe to POD inside ECU

VECTOR >
Debugging over XCP Standard

Standardization of manufacturer-independent mechanisms addressing todays
and future needs of ECU debugging

» Standard shall enable the interoperability of different debuggers with
different PODs and different MC Tools

» Extension of the widely used Universal Measurement and Calibration
Protocol

» By means of the ASAM Standard Debugging over XCP, associated to XCP

» Definition of generic mechanisms
» Shall be applicable to embedded XCP Slaves and PODs

XCP XCP Access to
Debugger nC Debug uC
Slave
Resources

Any XCP Transport Layer]

Embedded XCP slaves as well
as attached PODs

Range of Covered Technologies

POD based solution

largest range of
debug functionality

VECTOR >

ECU

Embedded XCP Slave

reduced range of
debug functionality

In depth comparison is
given in chapter 3.5 of
the standard

MC — Measurement and Calibration

POD
MC Tool XCP on ETH
A ECU IO
Slaves
Debugger XCP on ETH
PC based JTAG, DAP, IO-Pins, ...
pC
XCP on CAN XCP
Debugger Slave
Debug
PC based Support
Unit

HC Resources

10

VECTOR >
Essential Features Enabling ECU Debugging

» High level commands: reading and writing of arbitrary memory locations
» Most efficient method for interaction of debugger and target

» POD translates high level command in possibly several low level target
accesses

» Similar to classical XCP memory access mechanisms but without address
translation

» Low level target access
» Method for sending JTAG and DAP commands

» Fallback solution if
> resources are not memory mapped
> POD is not aware of accessing arbitrary memory locations

» For more complex, atomic accesses exclusive bus access can be
requested

» I/O control

» Enables debugger to control target reset, watchdog disable and other
functions a POD might not be aware of

11

VECTOR >
Methods Improving Parallel Use of MC and Debugging

Definition of Service Levels
» The XCP slave determines the service level

» The service level might change during run time
» An event is sent to the debugger upon a service level change

» The debugger

» shall adapt the feature set offered to the user according to the service
level

» shall adapt the XCP command sequence, e.g. shorten time span of
exclusive target access
» 4 service level are defined
» Service level 1 - debugging not possible
» Service level 2 - exclusive debugger access to target
» Service level 3 - high bandwidth assigned to debugger
» Service level 4 - low bandwidth assigned to debugger

12

VECTOR >
Methods Improving Parallel Use of MC and Debugging - cont’d

Semantical awareness of debugger activities

» Debugger uses XCP commands rather than a primitive hardware arbitration
mechanism

» POD can optimize scheduling of XCP commands from different XCP masters
(MC, debugger) to improve system performance

» When needed, the debugger can request exclusive target access

VECTOR >

For more information about Vector
and our products please visit

WWW.vector.com

Author:
Kdnig, Ralf
Vector Germany

© 2018. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2018-06-06

Software Debugging over XCP:
Effectively Debugging ECUs In
the Field

Michael Eick
2018/06/ 14

LauTERBACH f\

www.lauterbach.com

LAUTERBACH A
2018 / JUNE

Agenda

» Motivation
» Key Features of the Standard

» The Standard from a Debugger Supplier’s
Perspective

» Live Demo

s 2/12

| LAUTERBACH A
2018 / JUNE

Debug System Overview

Host
PC

Debugger

A

Debug Probe

System Bus R/W

Debug Register
R/W JTAG, DAP

Debug Protocol Z /
1/O
[Go, Break, Step,

Read/Write Memory Signal 1/0

Reset, ...

g 3/12

| LAUTERBACH A
2018 / JUNE

Debug System Overview

Host
PC

Debugger

A

[

Go, Break, Step,
Read/Write Memory

Debug Probe

System Bus R/W

Debug Register
R/W

Debug Prctoco.
1/O

Signal 1/0

low latency

s 4/12

LAUTERBACH A

2018 / JUNE

Low-Level Tunneling Approach

Debugger
POD
System Bus R/W sequence of
8 Debug Register JTAG/DAP
o R/W commands
@)
L ~
Debug Protocol f— »| Debug Protocol
1/0 l I 1/O
: I
Signal I/O ‘\ 7 » Signal I/O
e.g., TCP

» Supports all operations required for debugging

& 5/12

LAUTERBACH A

2018 / JUNE

Low-Level Tunneling Approach

Debugger

System Bus R/W

Debug Register
R/W

Debug Protocol
1/O

Host PC

Signal I/O ~ Signal I/0
e.g., TCP
» Supports all operations required for debugging
» Example bus read:
» several debug register operations } slow
» TCP latency adds to every operation

» Primarily relevant for POD use case

& 6/12

LAUTERBACH A

2018 / JUNE

High-Level Tunneling Approach

Debugger
e.g., TCP POD
7\

System Bus R/W — » System Bus R/W
o Debug Register | ,' N Debug Register
3 R/W -, 1 R/W

Debug Protocol block read/write of Rl PleeEel

1/O /O
(pseudo) memory
Signal 1/0 mapped resource Signal 1/0

» System bus read/write only one operation = good performance

» Can be implemented for embedded XCP slaves

» No actions possible requiring operations on debug protocol or
signal level - impact depends on ECU CPU type

s 7112

LAUTERBACH A

2018 / JUNE

Command Space of Standardized Protocol

Debugger
POD
P
System Bus R/W . ‘\ > System Bus R/W
o Debug Register l i » Debug Register
‘g R/W I 1 R/W
Debug Protocol [»| Debug Protocol
1/O l 1/O
\
Signal 1/0 ‘/' > Signal I/O

» Low-level commands are optional
» Debugger determines XCP slave (POD) capabilities via protocol
» restrictions may result if not available

» Debugger functions can be implemented using optimal combination of
high and low level commands

& 8/12

| LAUTERBACH A
2018 / JUNE

Parallel Usage of MC Tool and Debugger

POD
P
MC tool > = Q
% o System Bus R/W
a S o Debug Register
8 5 R/W
T — ¥
Debugger > ® | Debug Protocol
= 0 /O
\ ® U
g o -
\ S Signal 1/0
\ o)
\ _

Supported by standard through
exclusive access request
service level events

g 9/12

) LAUTERBACH A
. 2018 / JUNE

Supported Debug Functions

» Start and stop program execution, single stepping

» Program and read/write breakpoints

» Debugging from the reset vector

» Run-time access to arbitrary memory locations, high-level (C/C++/...)
variables, peripherals

» Flash programming

» On-chip trace (if not in use by MC tool)

Limits
» No off-chip trace

» Performance compared to system with debug probe

» Operations can take longer
(e.g., time required for single step, start, stop)

» Higher reaction time

s 10/12

LAUTERBACH A

2018 / JUNE

Supported CPUs

» Standard is CPU independent

» High-Level Commands
» Mapping to target resources needs to be CPU specific

» Mapping currently defined in appendix for
Infineon TriCore™ Renesas RH850 MPC5xxx

» Can be easily extend to new CPUs

» Low-Level Commands
Infineon DAP JTAG

s 11/12

LAUTERBACH A
2018 / JUNE

Live Demo

Lauterbach Vector
TRACE32 CANape

Software Debug /[XCP (Ethernet)]
over XCP
(Ethernet)
[Vector VX1000 Vector Infineon
POD TriBoard™

[Infineon DAP

g 12/12

www.lauterbach.com 2018 / JUNE

' QUESTIONS?

Michael Eick
Michael .Eick@lauterbach.com

LauTeRBACH [\

