
V1.0 | 2018-06-06

ASAM Technical Seminar 2018

Software Debugging over XCP:
Effectively Debugging ECUs in the Field

2

 Motivation

 Key Features of the Standard

 The Standard from a Debugger Supplier’s Perspective

 Live Demo

Agenda

Effectively Debugging ECUs in the Field

3

As successor of the CAN Calibration Protocol (CCP) the
Universal Measurement and Calibration Protocol (XCP) is primarily used for

 Measurement: acquisition of values of internal variables of an ECU

 Calibration: adjustment of internal variables

XCP is designed as a two layer protocol

 Unique protocol layer

 Transport layer: support for different
transport media/busses

The Roots of XCP

Effectively Debugging ECUs in the Field

XCP

on

CAN

XCP

on

FLX

XCP

on

ETH

XCP

on

SxI

XCP

on

USB

XCP Protocol Layer

4

MC and DBG typically rely on the same target debug interface for ECU access

 Switching between MC-HW and Debug Probe is cumbersome

 Mechanical setup might even prevent Debug Probe access to ECU

Data acquisition and calibration (MC) and software debugging (DBG)
are essential techniques used during all stages of ECU development

 Techniques have typically been used apart in the past

 Demand of concurrent use in future

Motivation

Effectively Debugging ECUs in the Field

5

Limitations

 Hardware-based arbitration mechanisms lack semantical information of the
arbitration request

 Limits interoperability, system performance and usability

 POD encapsulated within ECU housing

 Debug Probe unable to access ECU

Switching of ECU Debug Signals

Effectively Debugging ECUs in the Field

XCP on Ethernet
MC Tool XCP Slave

ECUDebug

Probe

POD

Debugger

PC based JTAG, DAP, IO-Pins, ...
MC – Measurement and

Calibration

ECU IO

6

Limitations

 Proprietary protocol used for communication between Base Module
and POD prevents relay of Debug Probe signals

Partitioned MC System

Effectively Debugging ECUs in the Field

XCP on Ethernet
MC Tool XCP Slave

Debug

Probe

Base Module

Debugger

PC based JTAG, DAP, IO-Pins, ...
MC – Measurement and

Calibration

Propriet.

Protocol

Propriet.

Protocol

POD

Proprietary Communication

ECUECU IO

7

BroadR-Reach Tool Access

Effectively Debugging ECUs in the Field

Limitations

 No interface option to connect Debug Probe to POD inside ECU

ECU

BroadR-Reach (XCP on ETH)
MC Tool

Debug

Probe
Debugger

PC based JTAG, DAP, IO-Pins, ...
MC – Measurement and

Calibration

POD

µC

µC IO

XCP Slave

8

Standardization of manufacturer-independent mechanisms addressing todays
and future needs of ECU debugging

 Standard shall enable the interoperability of different debuggers with
different PODs and different MC Tools

 Extension of the widely used Universal Measurement and Calibration
Protocol

 By means of the ASAM Standard Debugging over XCP, associated to XCP

 Definition of generic mechanisms

 Shall be applicable to embedded XCP Slaves and PODs

Debugging over XCP Standard

Effectively Debugging ECUs in the Field

XCP

Slave

Access to

µC Debug

Resources

µCDebugger
XCP

Any XCP Transport Layer

Embedded XCP slaves as well
as attached PODs

9

Range of Covered Technologies

Effectively Debugging ECUs in the Field

XCP

Slave

µC

Debugger
XCP on CAN

Debug

Support

Unit

PC based

µC Resources

XCP on ETH
MC Tool

ECU

POD

Debugger
XCP on ETH

ECU IO

PC based JTAG, DAP, IO-Pins, ... MC – Measurement and Calibration

XCP

Slaves

POD based solution

largest range of
debug functionality

Embedded XCP Slave

reduced range of
debug functionality

In depth comparison is
given in chapter 3.5 of
the standard

10

 High level commands: reading and writing of arbitrary memory locations

 Most efficient method for interaction of debugger and target

 POD translates high level command in possibly several low level target
accesses

 Similar to classical XCP memory access mechanisms but without address
translation

 Low level target access

 Method for sending JTAG and DAP commands

 Fallback solution if
> resources are not memory mapped

> POD is not aware of accessing arbitrary memory locations

 For more complex, atomic accesses exclusive bus access can be
requested

 I/O control

 Enables debugger to control target reset, watchdog disable and other
functions a POD might not be aware of

Essential Features Enabling ECU Debugging

Effectively Debugging ECUs in the Field

11

Definition of Service Levels

 The XCP slave determines the service level

 The service level might change during run time

 An event is sent to the debugger upon a service level change

 The debugger

 shall adapt the feature set offered to the user according to the service
level

 shall adapt the XCP command sequence, e.g. shorten time span of
exclusive target access

 4 service level are defined

 Service level 1 – debugging not possible

 Service level 2 – exclusive debugger access to target

 Service level 3 – high bandwidth assigned to debugger

 Service level 4 – low bandwidth assigned to debugger

Methods Improving Parallel Use of MC and Debugging

Effectively Debugging ECUs in the Field

12

Semantical awareness of debugger activities

 Debugger uses XCP commands rather than a primitive hardware arbitration
mechanism

 POD can optimize scheduling of XCP commands from different XCP masters
(MC, debugger) to improve system performance

 When needed, the debugger can request exclusive target access

Methods Improving Parallel Use of MC and Debugging – cont’d

Effectively Debugging ECUs in the Field

13 © 2018. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector. V1.0 | 2018-06-06

Author:
König, Ralf
Vector Germany

For more information about Vector
and our products please visit

www.vector.com

Michael Eick
2018 / 06 / 14

ASAM Technical Workshop 2018

Software Debugging over XCP:

Effectively Debugging ECUs in

the Field

2 /12

2018 / JUNE

Motivation

Key Features of the Standard

The Standard from a Debugger Supplier’s
Perspective

Live Demo

Agenda

3 /12
YYYY / MM

2018 / JUNE

Debug System Overview

Host

PC

Debug Probe

ECU

JTAG, DAP

Reset, …

Go, Break, Step,

Read/Write Memory

Debugger

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

4 /12
YYYY / MM

2018 / JUNE

Debug System Overview

Host

PC

Debug Probe

ECU
Go, Break, Step,

Read/Write Memory

Debugger

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

low latency

5 /12
YYYY / MM

2018 / JUNE

Low-Level Tunneling Approach

► Supports all operations required for debugging

POD

Debug Protocol

I/O

Signal I/O

ECU

Debugger

e.g., TCP

H
o
s
t

P
C

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

sequence of

JTAG/DAP

commands

6 /12
YYYY / MM

2018 / JUNE

Low-Level Tunneling Approach

► Supports all operations required for debugging

► Example bus read:

► several debug register operations

► TCP latency adds to every operation

► Primarily relevant for POD use case

slow

POD

Debug Protocol

I/O

Signal I/O

ECU

Debugger

e.g., TCP

H
o
s
t

P
C

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

7 /12
YYYY / MM

2018 / JUNE

High-Level Tunneling Approach

► System bus read/write only one operation → good performance

► Can be implemented for embedded XCP slaves

► No actions possible requiring operations on debug protocol or

signal level → impact depends on ECU CPU type

POD

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

ECU

e.g., TCP
Debugger

H
o
s
t

P
C

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

block read/write of

(pseudo) memory

mapped resource

8 /12
YYYY / MM

2018 / JUNE

Command Space of Standardized Protocol

POD

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

ECU

► Low-level commands are optional

► Debugger determines XCP slave (POD) capabilities via protocol

► restrictions may result if not available

► Debugger functions can be implemented using optimal combination of

high and low level commands

Debugger

H
o
s
t

P
C

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

9 /12
YYYY / MM

2018 / JUNE

Parallel Usage of MC Tool and Debugger

POD

System Bus R/W

Debug Register

R/W

Debug Protocol

I/O

Signal I/O

ECU

H
o
s
t

P
C

Debugger
a
rb

ite
r

MC tool

X
C

P
 s

la
v
e

(d
e
b
u
g
)

X
C

P
 s

la
v
e

(M
C

)

Supported by standard through

exclusive access request

service level events

10 /12
YYYY / MM

2018 / JUNE

Supported Debug Functions

Start and stop program execution, single stepping

Program and read/write breakpoints

Debugging from the reset vector

Run-time access to arbitrary memory locations, high-level (C/C++/…)
variables, peripherals

Flash programming

On-chip trace (if not in use by MC tool)

Limits
No off-chip trace

Performance compared to system with debug probe

Operations can take longer
(e.g., time required for single step, start, stop)

Higher reaction time

11 /12
YYYY / MM

2018 / JUNE

Supported CPUs

Standard is CPU independent

High-Level Commands

Mapping to target resources needs to be CPU specific

Mapping currently defined in appendix for

Infineon TriCore™ Renesas RH850 MPC5xxx

Can be easily extend to new CPUs

Low-Level Commands

Infineon DAP JTAG

12 /12

2018 / JUNE

Live Demo

Lauterbach

TRACE32

Vector

CANape

H
o
s
t

P
C

Vector VX1000 Vector

POD

Infineon

TriBoard™

Software Debug

over XCP

(Ethernet)

XCP (Ethernet)

Infineon DAP

Use Case:

„Debugging“

Use Case:

„DAQ“

Michael Eick
Michael.Eick@lauterbach.com

QUESTIONS?

THANK YOU!

2018 / JUNE

