

Impact of ADAS and Autonomous Driving Systems on ASAM Standards

Regional Member Meeting Japan, 2017, Tokyo

Presenter **Thomas Thomsen** ASAM e.V.

Content

1	New System Architectures for ADAS and Autonomous Driving
2	AUTOSAR Adaptive Platform
3	Impact on ASAM Standards
4	Summary

Photos

Gerd Winkler, Continental Automotive Systems

Martin Lunt, Robert Bosch GmbH & AUTOSAR

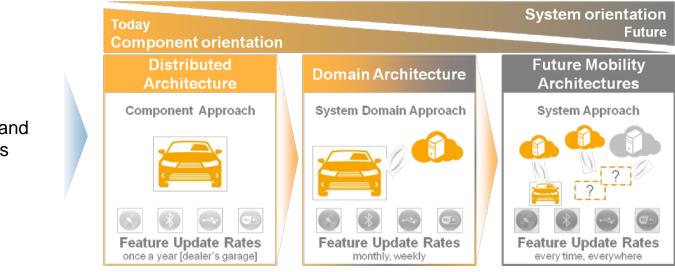
from the

ASAM General Assembly

March 08, 2017 Stuttgart, Germany

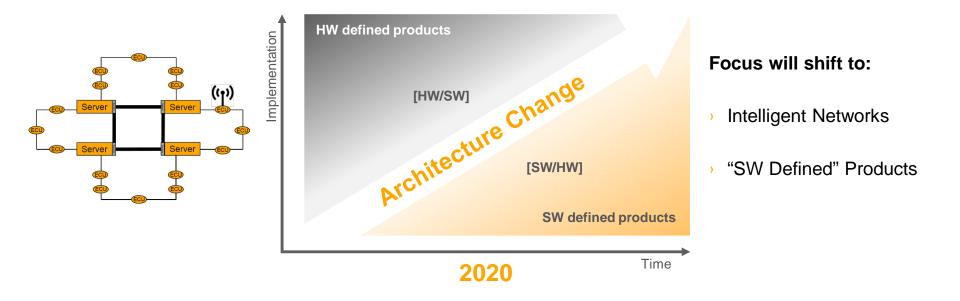
Audience

Panel Discussion



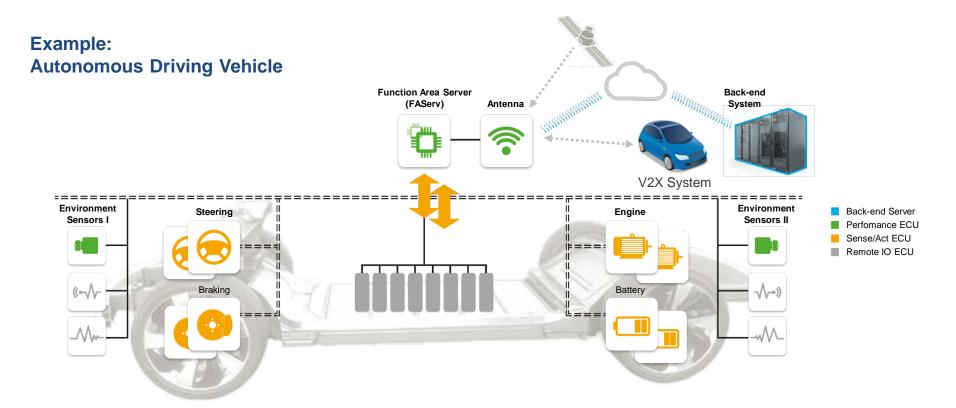
Ontinental : Drivers for New System Architecture

Ontinental : System Orientation and its Impact

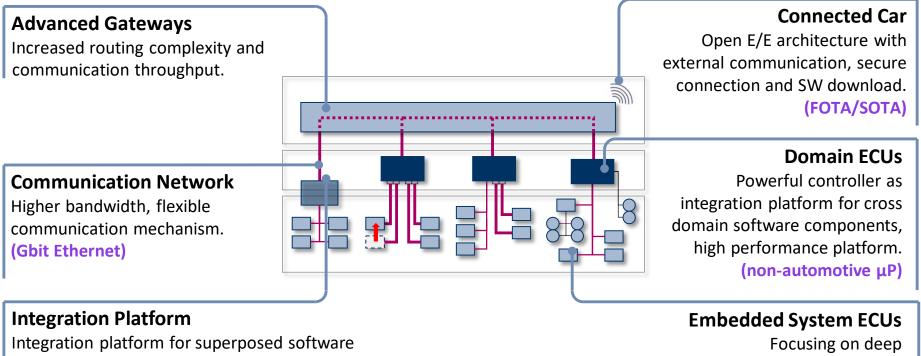


Key Drivers and Challenges

> Source: "Future Vehicle System Architecture" Gerd Winkler, Continental Automotive Systems ASAM General Assembly, Stuttgart, March 08, 2017

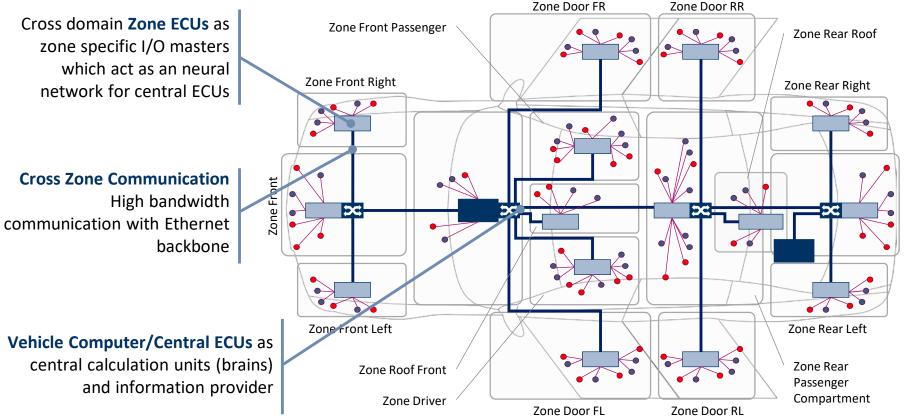


Ontinental : Architecture Vision


Ontinental : Server-Based Architecture

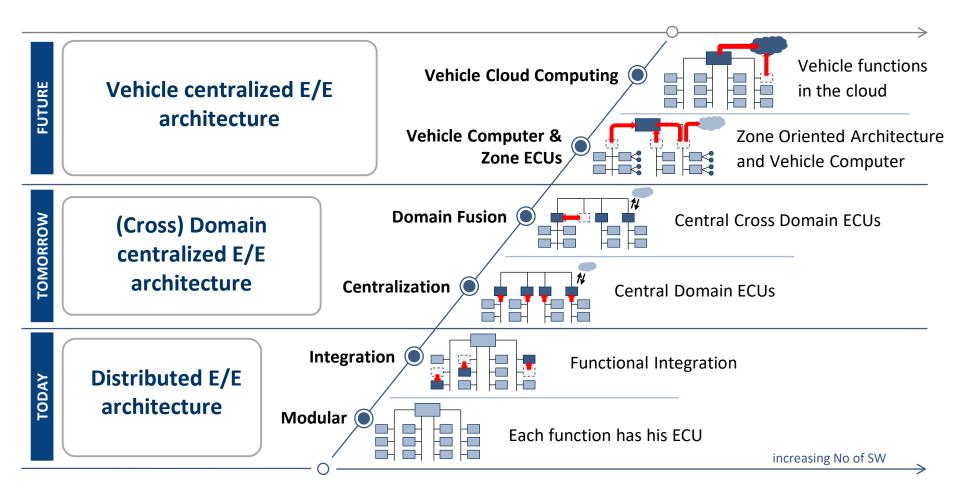
7

BOSCH: Domain-Centralized E/E Architecture


(Hypervisor)

Source: "E/E Architecture in a Connected World" Martin Lunt, Robert Bosch GmbH ASAM General Assembly, Stuttgart, March 08, 2017

system specific functionalities.


BOSCH: Vehicle-Centralized E/E Architecture

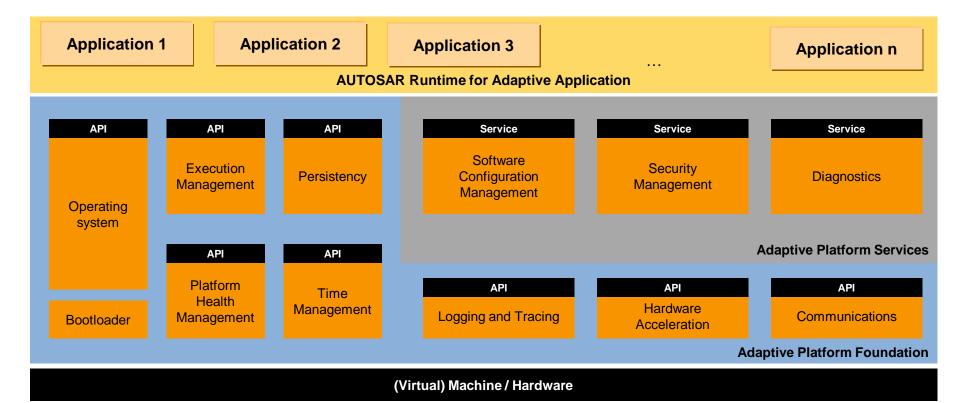
Source: "E/E Architecture in a Connected World" Martin Lunt, Robert Bosch GmbH ASAM General Assembly, Stuttgart, March 08, 2017

BOSCH: Roadmap E/E Architecture

10

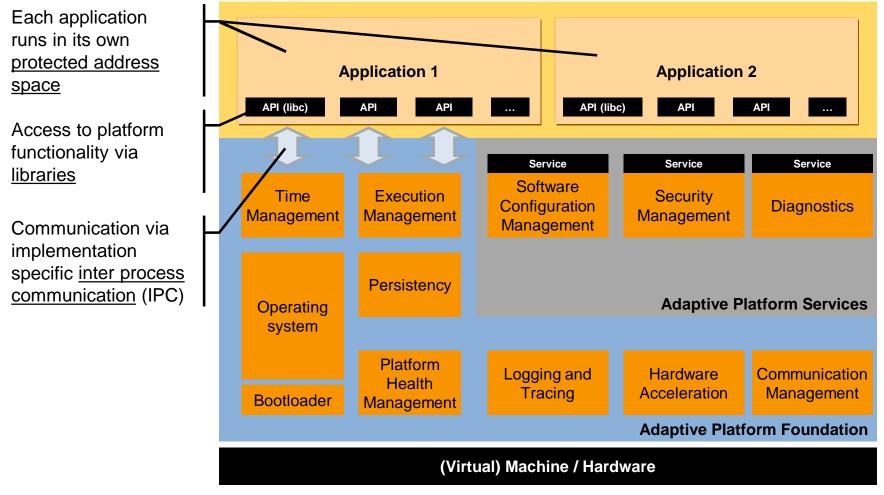
Content

1	New System Architectures for ADAS and Autonomous Driving
2	AUTOSAR Adaptive Platform
3	Impact on ASAM Standards
4	Summary


AUT@SAR: Motivation for a New Platform

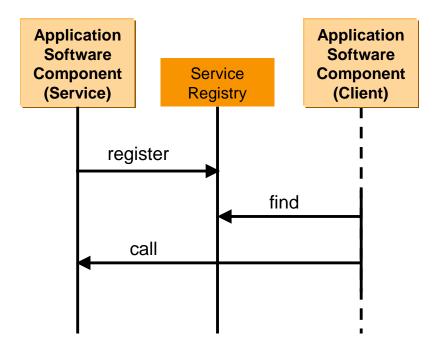
Runtime Environment			GENIVI me and add	mbers build and in their differentiating	ntegrate compliai g features, tools,	nt products services
Service Layer			Audio	Graphics	Multimedia	Speech
ECU Abstraction			CE-device	External Access	Connectivity	Positionir
Layer CD			Package Management	Networking	Security	Personal Information Manageme
Microcontroller Abstraction Layer				System Infr		
Microcontroller	-		Linus	x operating system x86 or ARM-bas		aries
AUTOSAR Classic Platform	AUTOSAR Adaptiv Platform	ve	h	nfotai	nmen	t

Real time	High,	Mid,	Low,
Requirements	in the range of micro-sec	in the range of milli-sec	in the range of sec
Safety	High,	High,	Low,
Criticality	up to ASIL-D	at least ASIL-B	QM
Computing power	Low,	High,	High,
	~ 1000 DMIPs	> 20.000 DMIPs	~ 10.000 DMIPs


AUT@SAR: Architectural Overview

13

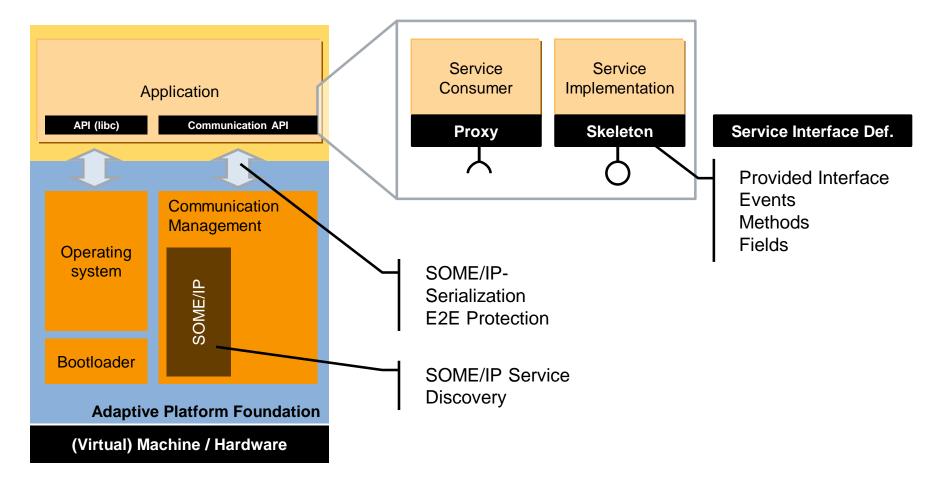
AUT@SAR: Memory Virtualization & Communication



Source: "AUTOSAR Adaptive Platform Introduction" Martin Lunt, Robert Bosch GmbH ASAM General Assembly, Stuttgart, March 08, 2017

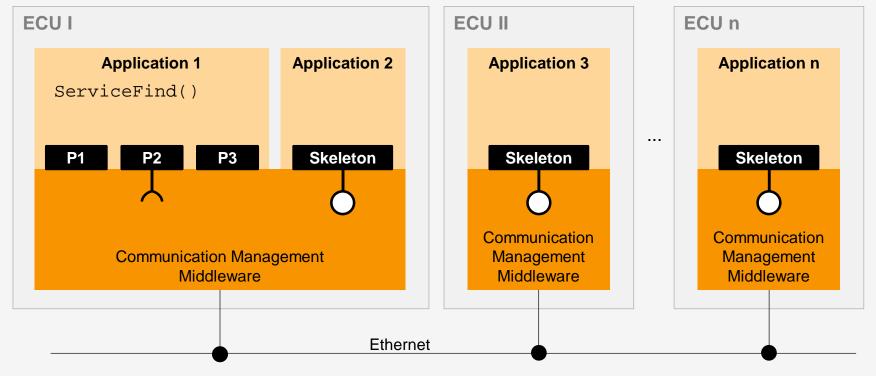
AUT@SAR: Service-Oriented Communication

- SW components executed on the adaptive platform will use <u>service-oriented</u> <u>communication</u>.
- Communication paths can be established at <u>design- and at run-time</u>.
- The AUTOSAR Adaptive platform will therefore provide middleware functionality.



Sequence Diagram

Source: "AUTOSAR Adaptive Platform Introduction" Martin Lunt, Robert Bosch GmbH ASAM General Assembly, Stuttgart, March 08, 2017


AUT@SAR: Service-Oriented Communication

16

AUT@SAR: Dynamically Established Communication

Dynamically established communication path(s)

- Service discovery finds all local and remote service instances in the system.
- Available service instances are represented by Proxies (P1 ... P3) to the application.
- > Application can choose which service instance(s) to use.

www.asam.net

Content

1	New System Architectures for ADAS and Autonomous Driving
2	AUTOSAR Adaptive Platform
3	Impact on ASAM Standards
4	Summary

Development

ECU

Conne

Communication

Internal ECU Data

Inter-ECU

Duration

Paradigm Shift in E/E Development

Classic

• SOP = ECU is feature-complete

Adaptive

- SOP = ECU has minimum feature set
- Applications are added after SOP

- In-vehicle networks
- Ports to connect with workshop testers
- Signal-oriented communication

- Static memory allocation
- Variables, recorded as time-series

- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- <u>Service-oriented communication</u>

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

The Classic Paradigm - Well Covered by ASAM

Classic

• SOP = ECU is feature-complete

- In-vehicle networks
- Ports to connect with workshop testers
- Signal-oriented communication

- Static memory allocation
- Variables, recorded as time-series

- Well covered by ASAM standards
- Mature
- Proven in practice for 10 20 years
- Written by best industry experts
- Wide range of COTS tools available

Internal ECU Data

The Adaptive Paradigm?

Adaptive

- SOP = ECU has minimum feature set
- Applications are added after SOP
- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- <u>Service-oriented communication</u>

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

Internal ECU Data

ASAM MCD-2 D (ODX)

Problem:

How to diagnose/update applications, that may or may not be present in the ECU?

- Discovery or registration of applications and their DTCs
- ECU flashing with the "right" content

Adaptive

- SOP = ECU has minimum feature set
- <u>Applications are added after SOP</u>
- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- <u>Service-oriented communication</u>

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

Adaptive

- SOP = ECU has minimum feature set
- Applications are added after SOP
- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- Service-oriented communication

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

ASAM MCD-2 NET (FIBEX)

FIBEX already covers SOME/IP.

> Current project fixes some minor issues.

All ASAM MCD Standards

Problem:

- Memory objects are dynamic, i.e. they
- may or may not exist
- may have multiple instances
- may or may not contain data
- have no fixed address
- Data discovery or registration
- Event-based data logging

Problem:

Objects and frame-based data have totally different formats than time-series data

- Re-definition of calibration protocol (XCP)
- Re-definition of data storage format (MDF)

Adaptive

- SOP = ECU has minimum feature set
- <u>Applications are added after SOP</u>
- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- <u>Service-oriented communication</u>

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

Adaptive

- SOP = ECU has minimum feature set
- Applications are added after SOP
- In-vehicle networks
- <u>Telematics unit to connect with</u> <u>external servers</u>
- <u>Service-oriented communication</u>

- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

ASAM ODS

Problem:

Objects have totally different formats than time-series data

- Object-oriented ODS base model
- Object-oriented data base

Problem:

Frame-based data have high bandwidth and storage requirements

Making ODS ready for Big Data

Internal ECU Data

Content

1	New System Architectures for ADAS and Autonomous Driving
2	AUTOSAR Adaptive Platform
3	Impact on ASAM Standards
4	Summary

Summary

New Development-Paradigms for ASAM Standards

- Applications are added after SOP
- Telematics unit to connect with external servers
- Service-oriented communication
- Dynamic memory allocation
- Objects, recorded as event-series
- Frame-based data, recorded as streams

Thank you for your attention

Thomas Thomsen

Global Technology Manager, ASAM e.V.

Phone: +49 (8102) 8061-64 Email: thomas.thomsen@asam.net